Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 29, 2009
Accepted December 1, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Improvement of cephalosporin C production by Acremonium chrysogenum M35 in submerged culture with glass beads or silicone rubber
Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Korea
kimsw@korea.ac.kr
Korean Journal of Chemical Engineering, February 2010, 27(2), 570-575(6), 10.1007/s11814-010-0108-8
Download PDF
Abstract
Physical stimulation using a baffle or an impeller has been previously reported to improve cephalosporin C (CPC) production and cell growth. In this study, the effect of glass beads on CPC production in Acremonium chrysogenum M35 was investigated in baffled flasks along with the morphological properties of the culture. Addition of glass beads into the culture broth was found to significantly influence CPC production and cell growth of A. chrysogenum M35 in baffled shake flasks. CPC concentration increased about 30% when compared with baffled flasks without glass beads. Morphological changes such as the total perimeter and number of units, total number of differentiated hyphae or arthrospores, corresponded to varied CPC concentrations. Specifically, total perimeter and number of units increased by more than 10%. However, changes in pH had no relationship to CPC production or the number of glass beads. Pieces of silicone rubber were mixed into a 5 L bioreactor culture to assess any improvement of CPC production. Once added into the main culture, the production of CPC increased about 30% while values of dissolved oxygen (DO), which can be used to estimate oxygen transfer rate (OTR), were lower than main medium without silicone rubber. And dry cell weight was also increased about 10% when silicone rubber was added into a 5 L bioreactor.
References
Sandor E, Szentirmai A, Paul GC, Thomas CR, Pocsi L, Karaffa L, Can. J. Microbio., 47, 801 (2001)
Barber MS, Giesecke U, Reichert A, Minas W, Adv. Biochem. Eng. Biotechnol., 88, 179 (2004)
Neu HC, Am. J. Med., 29, 75 (1983)
Dalhoff A, Nasu T, Okamoto K, Chemotherapy, 49, 172 (2003)
Bandi S, Kim YJ, Sa SO, Chang Y, J. Microbiol. Biotechnol., 15, 930 (2005)
Kim HH, Na J, Chang YK, Chun G, Lee SJ, Jeong YH, J. Microbiol. Biotechnol., 14, 944 (2004)
Kwon DY, Rhee JS, J. Am. Oil Chem. Soc., 63, 89 (1986)
Park JP, Kim SW, Hwang HJ, Cho YJ, Yun JW, Enzyme Microb. Technol., 31(3), 250 (2002)
Yang FC, Ke YF, Kuo SS, Enzyme Microb. Technol., 27(3-5), 295 (2000)
Stefanie S, Christian MD, Jeffrey S, Christian MD, Primary Care Updata for OB/GNYS, 4, 168 (1977)
Ruy SJ, Paulo IF, Proc. Biochem., 37, 461 (2001)
Justen P, Paul GC, Nienow AW, Thomas CR, Biotechnol. Bioeng., 59(6), 762 (1998)
Shamlou PA, Makagiansar HY, Ison AP, Lilly MD, Thomas CR, Chem. Eng. Sci., 49(16), 2621 (1994)
Kim JC, Kang SW, Lim JS, Song YS, Kim SW, J. Microbiol. Biotechnol., 16, 1120 (2006)
Kim NR, Lim JS, Hong SI, Kim SW, J. Microbiol. Biotechnol., 21, 787 (2005)
Kim JC, Lim JS, Kim JM, Kim C, Kim SW, Korea-Aust. Rheol. J., 17(1), 15 (2005)
Lim JS, Kim JH, Kim C, Kim SW, Korea-Aust. Rheol. J., 14(1), 11 (2002)
Van Suijdam JC, Metz B, Biotechnol. Bioeng., 23, 111 (1981)
Petersen N, Stocks S, Gernaey KV, Biotechnol. Bioeng., 1, 61 (2008)
Oncul S, Tari C, Unluturk S, Biotechnol. Prog., 23(4), 836 (2007)
Matsumura M, Imanaka T, Yoshida T, Taguchi H, J. Ferment Technol., 56, 345 (1978)
Matsumura M, Yoshida T, Taguchi H, Eur. J. Appl. Microbiol. Biotechnol., 16, 114 (1982)
Scheidegger A, Kunzi M, Fiechter A, Nusch J, J. Biotechnol., 7, 131 (1988)
Grimm LH, Kelly S, Krull R, Hempel DC, Appl. Microbiol. Biotechnol., 69(4), 375 (2005)
Tollnick C, Seidel G, Beyer M, Schugerl K, Adv. Biochem. Eng. Biotechnol., 86, 1 (2004)
Herold T, Bayer T, Schugerl K, Appl. Microbiol. Biotechnol., 29, 168 (1988)
Zhou W, Holzhauer-Rieger K, Dors M, Schugerl K, J. Biotechnol., 23, 315 (1992)
Olsvik ES, Kristiansen B, Biotechnol. Bioeng., 20, 1293 (1992)
Cui YQ, van der Lans RGJM, Luyben KCAM, Biotechnol. Bioeng., 57(4), 409 (1998)
Bai Z, Harvey LM, McNeil B, Crit. Rev. Biotechnol., 23, 267 (2003)
Lee MS, Lim JS, Kim CH, Oh KK, Hong SI, Kim SW, Biotechnol. Bioprocess Eng., 6, 156 (2001)
Lee MS, Lim JS, Kim CH, Oh KK, Yang DR, Kim SW, Lett. Appl. Microbiol., 32, 402 (2001)
Kim JH, Lim JS, Kim SW, Biotechnol. Bioprocess Eng., 9, 459 (2004)
Barber MS, Giesecke U, Reichert A, Minas W, Adv. Biochem. Eng. Biotechnol., 88, 179 (2004)
Neu HC, Am. J. Med., 29, 75 (1983)
Dalhoff A, Nasu T, Okamoto K, Chemotherapy, 49, 172 (2003)
Bandi S, Kim YJ, Sa SO, Chang Y, J. Microbiol. Biotechnol., 15, 930 (2005)
Kim HH, Na J, Chang YK, Chun G, Lee SJ, Jeong YH, J. Microbiol. Biotechnol., 14, 944 (2004)
Kwon DY, Rhee JS, J. Am. Oil Chem. Soc., 63, 89 (1986)
Park JP, Kim SW, Hwang HJ, Cho YJ, Yun JW, Enzyme Microb. Technol., 31(3), 250 (2002)
Yang FC, Ke YF, Kuo SS, Enzyme Microb. Technol., 27(3-5), 295 (2000)
Stefanie S, Christian MD, Jeffrey S, Christian MD, Primary Care Updata for OB/GNYS, 4, 168 (1977)
Ruy SJ, Paulo IF, Proc. Biochem., 37, 461 (2001)
Justen P, Paul GC, Nienow AW, Thomas CR, Biotechnol. Bioeng., 59(6), 762 (1998)
Shamlou PA, Makagiansar HY, Ison AP, Lilly MD, Thomas CR, Chem. Eng. Sci., 49(16), 2621 (1994)
Kim JC, Kang SW, Lim JS, Song YS, Kim SW, J. Microbiol. Biotechnol., 16, 1120 (2006)
Kim NR, Lim JS, Hong SI, Kim SW, J. Microbiol. Biotechnol., 21, 787 (2005)
Kim JC, Lim JS, Kim JM, Kim C, Kim SW, Korea-Aust. Rheol. J., 17(1), 15 (2005)
Lim JS, Kim JH, Kim C, Kim SW, Korea-Aust. Rheol. J., 14(1), 11 (2002)
Van Suijdam JC, Metz B, Biotechnol. Bioeng., 23, 111 (1981)
Petersen N, Stocks S, Gernaey KV, Biotechnol. Bioeng., 1, 61 (2008)
Oncul S, Tari C, Unluturk S, Biotechnol. Prog., 23(4), 836 (2007)
Matsumura M, Imanaka T, Yoshida T, Taguchi H, J. Ferment Technol., 56, 345 (1978)
Matsumura M, Yoshida T, Taguchi H, Eur. J. Appl. Microbiol. Biotechnol., 16, 114 (1982)
Scheidegger A, Kunzi M, Fiechter A, Nusch J, J. Biotechnol., 7, 131 (1988)
Grimm LH, Kelly S, Krull R, Hempel DC, Appl. Microbiol. Biotechnol., 69(4), 375 (2005)
Tollnick C, Seidel G, Beyer M, Schugerl K, Adv. Biochem. Eng. Biotechnol., 86, 1 (2004)
Herold T, Bayer T, Schugerl K, Appl. Microbiol. Biotechnol., 29, 168 (1988)
Zhou W, Holzhauer-Rieger K, Dors M, Schugerl K, J. Biotechnol., 23, 315 (1992)
Olsvik ES, Kristiansen B, Biotechnol. Bioeng., 20, 1293 (1992)
Cui YQ, van der Lans RGJM, Luyben KCAM, Biotechnol. Bioeng., 57(4), 409 (1998)
Bai Z, Harvey LM, McNeil B, Crit. Rev. Biotechnol., 23, 267 (2003)
Lee MS, Lim JS, Kim CH, Oh KK, Hong SI, Kim SW, Biotechnol. Bioprocess Eng., 6, 156 (2001)
Lee MS, Lim JS, Kim CH, Oh KK, Yang DR, Kim SW, Lett. Appl. Microbiol., 32, 402 (2001)
Kim JH, Lim JS, Kim SW, Biotechnol. Bioprocess Eng., 9, 459 (2004)