ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 3, 2009
Accepted October 31, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Issues with increasing bioethanol productivity: A model directed study

School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
ramkrish@ecn.purdue.edu
Korean Journal of Chemical Engineering, February 2010, 27(2), 576-586(11), 10.1007/s11814-010-0101-2
downloadDownload PDF

Abstract

We explore a way to improve the efficiency of fermentation of lignocellulosic sugars (i.e., glucose and xylose) to bioethanol in a bioreactor. For this purpose, we employ the hybrid cybernetic model developed by Song et al. (Biotechnol and Bioeng, 103: 984-1000, 2009), which provides an accurate description on metabolism of recombinant S. cerevisiae due to its unique feature of accounting for cellular regulation. A comprehensive analysis of the model reveals many interesting features of the process whose balance is critical for increasing the productivity of bioethanol. In particular, the addition of extra xylose to the medium may increase ethanol productivity (a somewhat counterintuitive result as xylose metabolism is slower!), but one that must be orchestrated with control of other important variables. Effects of xylose addition are shown to be different for different reactor environments. In a batch culture, xylose addition_x000D_ substantially improves ethanol productivity at low sugar concentration (e.g., about 45% up by increasing initial xylose concentration from 10 to 30 g/L with glucose concentration of 20 g/L), but worsens it at high sugar concentration (e.g., about 10% drop by increasing xylose concentration from 40 to 160 g/L with glucose concentration of 80 g/L). On the other hand, the productivity of chemostats is constantly improved by increasing the ratio of xylose to glucose level in the feed. It is found that multiple local maxima can exist in chemostats and, consequently, optimal composition for mixed sugars is different depending on the allowable range of xylose addition. Batch operation, however, is found to be superior when mixed sugars are consumed slowly, while continuous operation becomes attractive for rapidly metabolized sugars such as pure glucose. Optimal reactor configurations for given lignocellulosic sugars are shown to depend on calculated operating curves. Reasonably close comparison of model simulations with existing batch fermentation data provides support in part to the value of the current effort. The lesson that emerges is the importance of modeling in improving the efficiency of bioprocesses.

References

Annual Energy Outlook 2008 With Projections to 2030, U.S. Department of Energy, Energy Information Administration (2008)
Fetter S, The Bulletin of the Atomic Scientists, 28 (2000)
Mabee WE, Biofuels, 108, 329 (2007)
van Maris AJA, Abbott DA, Bellissimin E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JP, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 90, 391 (2006)
Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou SD, Biotechnol. Prog., 15(5), 855 (1999)
Lee J, J. Biotechnology, 56, 1 (1997)
Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF, Biofuels, 108, 147 (2007)
Lange JP, Biofuels Bioproducts & Biorefining-Biofpr, 1, 39 (2007)
Wingren A, Galbe M, Zacchi G, Biotechnol. Prog., 19(4), 1109 (2003)
Song HS, Morgan JA, Ramkrishna D, Biotechnol. Bioeng., 103(5), 984 (2009)
Ramkrishna D, Kompala DS, Tsao GT, Biotechnol. Prog., 3, 121 (1987)
Krishnan MS, Xia Y, Ho NWY, Tsao GT, Fuels and Chemicals from Biomass, 666, 74 (1997)
Kim JI, Varner JD, Ramkrishna D, Biotechnol. Prog., 24(5), 993 (2008)
Schuster S, Fell DA, Dandekar T, Nature Biotechnology, 18, 326 (2000)
Schuster S, Hilgetag C, Woods JH, Fell DA, Journal of Mathematical Biology, 45, 153 (2002)
Song HS, Ramkrishna D, Biotechnol. Bioeng., 102(2), 554 (2009)
Wong WC, Song HS, Lee JH, Ramkrishna D, Control Engineering Practice, DOI:10.1016/j.conengprac.2009.09.002 (2009)
Kompala DS, Ramkrishna D, Jansen NB, Tsao GT, Biotechnol. Bioeng., 28, 1044 (1986)
Young JD, Ramkrishna D, Biotechnol. Prog., 23(1), 83 (2007)
Shuler ML, Kargi F, Bioprocess engineering: Basic concepts, Prentice Hall PTR, Upper Saddle River, NJ (2002)
Sedlak M, Ho NWY, Appl. Biochem. Biotechnol., 113-16, 403 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로