Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 23, 2009
Accepted May 24, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Transfer rate measurement of lysozyme by liquid-liquid extraction using reverse micelles with dense CO2
Sun-Mi Jung
Un-Mi Shin
Md. Salim Uddin
Sun-Young Park1
Hideki Kishimura2
Gordon Wilkinson3
Byung-Soo Chun†
Institute of Food Science, Faculty of Food Science & Biotechnology, Pukyong National University, Busan 608-737, Korea 1School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia 2Research Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan 3School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
bschun@pknu.ac.kr
Korean Journal of Chemical Engineering, February 2010, 27(2), 596-601(6), 10.1007/s11814-010-0063-4
Download PDF
Abstract
Lysozyme was extracted from aqueous solution into i-octane using reverse micelles in the presence of pressurized CO2. A squat vessel with two independent stirrers was used to measure the mass transfer of the lysozyme across a planar interface. Mass transfer coefficient, k(L) of the lysozyme from the aqueous to the organic phase was measured at selected ionic strengths, pH, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant concentrations, temperatures and pressurized CO2. The mass transfer rate of lysozyme was higher in high temperature (318 K) and pressure (20MPa). pH of 9 in aqueous phase showed highest mass transfer rate of lysozyme. The application of pressurized CO2 markedly increased the mass transfer rate of lysozyme comparing to conventional non-pressurized system.
Keywords
References
Pires MJ, Airesbarros MR, Cabral JM, Biotechnol. Prog., 12(3), 290 (1996)
Lu Q, Chen H, Li K, Shi Y, Biochem. Eng. J., 1, 45 (1998)
Nagayama K, Matsuura S, Doi T, Imai M, J. Mol. Cat. B, 4, 25 (1998)
Lye GJ, Asenjo JA, Pyle DL, AIChE J., 42(3), 713 (1996)
Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
Dekker M, Van’t Riet K, Bijsterbosch BH, Fijneman P, Hilhorst R, Chem. Eng. Sci., 45, 2949 (1990)
Dungan SR, Bausch T, Hatton TA, Plucinski P, Nitsch W, J. Colloid Interface Sci., 145, 33 (1991)
Lye GJ, Asenjo JA, Pyle DL, Chem. Eng. Sci., 49(19), 3195 (1994)
Jarudilokkul S, Paulsen E, Stuckey DC, Bioseparation, 9, 81 (2000)
Zhang HF, Lu J, Han BX, J. Supercrit. Fluids, 20(1), 65 (2001)
Housaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., 24(1), 102 (2007)
Lewis JB, Chem. Eng. Sci., 3, 248 (1954)
Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265 (1951)
Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
Nishii Y, Nii S, Takahashi K, Takeuchi H, J. Chem. Eng. Jpn., 32(2), 211 (1999)
Chun BS, Wilkinson GT, Sep. Sci. Technol., 37(14), 3323 (2002)
Yoon HH, Korean J. Biotechnol. Bioeng., 5, 411 (1990)
Kinugasa T, Tanahashi SI, Takeuchi H, Ind. Eng. Chem. Res., 30, 2470 (1991)
Lye GJ, Asenjo JA, Pyle DL, in Separation Biotechnology, Volume 3, Pyle DL, Ed., Royal Society of Chemistry, UK (1994)
Kim H, Baek K, Kim BK, Shin HJ, Yang JW, Korean J. Chem. Eng., 25(2), 253 (2008)
Chun BS, Wilkinson GT, Ind. Eng. Chem. Res., 34(12), 4371 (1995)
Asai S, Hatanaka J, Uekawa Y, J. Chem. Eng. Jpn., 16, 463 (1963)
Park SW, Chun BS, Lim GT, Korean Chem. Eng. Res., 28, 594 (1990)
Schneider GM, in Supercritical Fluids Fundamentals for Application, Kiran E, Sengers JMHL, Eds., Kluwer Academic Publishers, Boston, USA (1994)
Lu Q, Chen H, Li K, Shi Y, Biochem. Eng. J., 1, 45 (1998)
Nagayama K, Matsuura S, Doi T, Imai M, J. Mol. Cat. B, 4, 25 (1998)
Lye GJ, Asenjo JA, Pyle DL, AIChE J., 42(3), 713 (1996)
Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
Dekker M, Van’t Riet K, Bijsterbosch BH, Fijneman P, Hilhorst R, Chem. Eng. Sci., 45, 2949 (1990)
Dungan SR, Bausch T, Hatton TA, Plucinski P, Nitsch W, J. Colloid Interface Sci., 145, 33 (1991)
Lye GJ, Asenjo JA, Pyle DL, Chem. Eng. Sci., 49(19), 3195 (1994)
Jarudilokkul S, Paulsen E, Stuckey DC, Bioseparation, 9, 81 (2000)
Zhang HF, Lu J, Han BX, J. Supercrit. Fluids, 20(1), 65 (2001)
Housaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., 24(1), 102 (2007)
Lewis JB, Chem. Eng. Sci., 3, 248 (1954)
Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265 (1951)
Nishiki T, Sato I, Muto A, Kataoka T, Biochem. Eng. J., 1, 91 (1998)
Nishii Y, Nii S, Takahashi K, Takeuchi H, J. Chem. Eng. Jpn., 32(2), 211 (1999)
Chun BS, Wilkinson GT, Sep. Sci. Technol., 37(14), 3323 (2002)
Yoon HH, Korean J. Biotechnol. Bioeng., 5, 411 (1990)
Kinugasa T, Tanahashi SI, Takeuchi H, Ind. Eng. Chem. Res., 30, 2470 (1991)
Lye GJ, Asenjo JA, Pyle DL, in Separation Biotechnology, Volume 3, Pyle DL, Ed., Royal Society of Chemistry, UK (1994)
Kim H, Baek K, Kim BK, Shin HJ, Yang JW, Korean J. Chem. Eng., 25(2), 253 (2008)
Chun BS, Wilkinson GT, Ind. Eng. Chem. Res., 34(12), 4371 (1995)
Asai S, Hatanaka J, Uekawa Y, J. Chem. Eng. Jpn., 16, 463 (1963)
Park SW, Chun BS, Lim GT, Korean Chem. Eng. Res., 28, 594 (1990)
Schneider GM, in Supercritical Fluids Fundamentals for Application, Kiran E, Sengers JMHL, Eds., Kluwer Academic Publishers, Boston, USA (1994)