ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 4, 2009
Accepted June 18, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Sintering characteristics of TiO2 nanoparticles by microwave processing

Department of Chemical Engineering, University of Seoul, Seoul 130-734, Korea
jhkimad@uos.ac.kr
Korean Journal of Chemical Engineering, February 2010, 27(2), 645-650(6), 10.1007/s11814-010-0057-2
downloadDownload PDF

Abstract

In many applications, sintering of particles is required to improve device efficiency. In particular, sintering of TiO2 nanoparticles attracts great attention because of growing of solar cell applications, and conventional sintering using an electrical furnace has been widely used for sintering of nanoparticles. In this study, conventional and microwave sintering processes were investigated to examine the possibility of application of microwave sintering method to TiO2 nanoparticles. Microwave sintering of TiO2 nanoparticles showed promising results compared with the conventional heat treatments in terms of surface area, crystalline phase, optical property and morphology. Considering the short sintering time, the microwave method could be more advantageous than the conventional sintering method in some application areas.

References

Glowczyk-Zubek J, J. Appl. Cosmetol., 22, 143 (2004)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Kim HR, Choi KY, Shul YG, Korean J. Chem. Eng., 24(4), 596 (2007)
Nam WS, Han GY, Korean J. Chem. Eng., 20(1), 180 (2003)
Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
Kuwabata S, Yamauchi H, Yoneyama H, Langmuir, 14(7), 1899 (1998)
Ferry JL, Glaze WH, Langmuir, 14(13), 3551 (1998)
Crittenden JC, Liu J, Hand DW, Perram DL, Water Res., 31, 429 (1997)
O’Regan B, Gratzel M, Nature, 353, 737 (1991)
Lee JW, Hwang KJ, Shim WG, Park KH, Gu HB, Kwun KH, Korean J. Chem. Eng., 24(5), 847 (2007)
Ngamsinlapasathian S, Sreethawong T, Suzuki Y, Yoshikawa S, Sol. Energ. Mat. Sol. C., 86, 269 (2005)
Kang MG, Park NG, Chang SH, Sol. Energy Mater. Sol. C., 75, 475 (2003)
Park NG, van de Lagemaat J, Frank AJ, J. Phys. Chem. B, 104(38), 8989 (2000)
Gratzel M, Prog. Photovolt: Res. Appl., 8, 171 (2000)
Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157 (1997)
Sutton WH, Am. Ceram. Soc. Bull., 68, 376 (1989)
Upadhyaya DD, Ghosh A, Dey GK, Prasad R, Suri AK, J. Mater. Sci., 36(19), 4707 (2001)
Borkar SA, Dharwadkar SR, Ceram. Int., 30, 509 (2004)
Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307 (2003)
Park JH, Ahn ZS, J. Mater. Sci., 30(13), 3339 (1995)
Spurr RA, Myers H, Anal. Chem., 29, 760 (1957)
Cullity BD, Stock SR, Elements of X-ray diffraction, Prentice Hall, London (2001)
Kubelka P, J. Opt. Am., 38, 448 (1948)
Kubelka P, Munk F, Z. Tech. Phys., 12, 593 (1938)
http://rsbweb.nih.gov/ij/index.html

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로