Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 21, 2009
Accepted August 2, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Antibacterial activity of silver nanoparticles prepared by a chemical reduction method
Department of Chemical and Biochemical Engineering, Konyang University, 26 Naedong, Nonsan, Chungnam 320-711, Korea 1Korea Institute of Energy Research, 71-2 Jangdong, Yuseong-gu, Daejeon 305-343, Korea
bslee@kier.re.kr
Korean Journal of Chemical Engineering, February 2010, 27(2), 688-692(5), 10.1007/s11814-010-0067-0
Download PDF
Abstract
Silver nanoparticles were obtained by chemical reduction of silver nitrate in water with sodium borohydride (NaBH4) in the presence of SDS (sodium dodecyl sulfate) as a stabilizer. The synthesized silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) and transmission electron microscopy (TEM). The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima at 400 nm by UV-vis. TEM_x000D_
showed the spherical nanoparticles with size in 10-20 nm. The antibacterial activity of silver nanoparticles was tested by using Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coil (E. coli). The silver nanoparticles, whose bacterial activity was dependent on the aggregation degree between particles, exhibited bacterial activity against S. aureus and E. coli.
References
Cho KH, Park JE, Osaka T, Park SG, Electrochim. Acta, 51(5), 956 (2005)
Nair LS, Laurencin CT, J. Biomed. Nanotechnol., 3, 301 (2007)
Siegrist M, Cousin ME, Kastenholz H, Wiek A, Appetite, 49, 459 (2007)
Dhermendra K, Tiwari JB, Sen P, World Appl. Sci. J., 3, 417 (2008)
Jiang HQ, Manolache S, Wong ACL, Denes FS, J. Appl. Polym. Sci., 93(3), 1411 (2004)
Yoksan R, Chirachanchai S, Mater. Chem. Phys., 115(1), 296 (2009)
Chou KS, Lu YC, Lee HH, Mater. Chem. Phys., 94(2-3), 429 (2005)
Lin WC, Yang MC, Macromol. Rapid Commun., 26(24), 1942 (2005)
Shin HS, Yang HJ, Kim SB, Lee MS, J. Colloid Interface Sci., 274(1), 89 (2004)
Kim KD, Han DN, Kim HT, Chem. Eng. J., 104(1-3), 55 (2004)
Yu DG, Colloids Surf. B: Biointerf., 59, 171 (2007)
Song KC, Lee SM, Park TS, Lee BS, Korean J. Chem. Eng., 26(1), 153 (2009)
Chen JP, Lim LL, Chemosphere, 49, 363 (2002)
Kora AJ, Manjusha R, Arunachalam J, Mat. Sci. Eng. C, In press (2009)
Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M, J. Colloid Interface Sci., 264(2), 396 (2003)
Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177 (2004)
Nair LS, Laurencin CT, J. Biomed. Nanotechnol., 3, 301 (2007)
Siegrist M, Cousin ME, Kastenholz H, Wiek A, Appetite, 49, 459 (2007)
Dhermendra K, Tiwari JB, Sen P, World Appl. Sci. J., 3, 417 (2008)
Jiang HQ, Manolache S, Wong ACL, Denes FS, J. Appl. Polym. Sci., 93(3), 1411 (2004)
Yoksan R, Chirachanchai S, Mater. Chem. Phys., 115(1), 296 (2009)
Chou KS, Lu YC, Lee HH, Mater. Chem. Phys., 94(2-3), 429 (2005)
Lin WC, Yang MC, Macromol. Rapid Commun., 26(24), 1942 (2005)
Shin HS, Yang HJ, Kim SB, Lee MS, J. Colloid Interface Sci., 274(1), 89 (2004)
Kim KD, Han DN, Kim HT, Chem. Eng. J., 104(1-3), 55 (2004)
Yu DG, Colloids Surf. B: Biointerf., 59, 171 (2007)
Song KC, Lee SM, Park TS, Lee BS, Korean J. Chem. Eng., 26(1), 153 (2009)
Chen JP, Lim LL, Chemosphere, 49, 363 (2002)
Kora AJ, Manjusha R, Arunachalam J, Mat. Sci. Eng. C, In press (2009)
Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M, J. Colloid Interface Sci., 264(2), 396 (2003)
Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177 (2004)