Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 20, 2009
Accepted October 1, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A catalytic membrane reactor for water-gas shift reaction
Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 1Korea Advanced Institute of Science and Technology, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Korea
eodor@kier.re.kr
Korean Journal of Chemical Engineering, March 2010, 27(3), 816-821(6), 10.1007/s11814-010-0133-7
Download PDF
Abstract
We conducted the WGS reaction on a catalytic membrane reactor consisting of a WGS catalyst bed, Pt/CeO2 and thin, defect-free, Pd-Cu alloy membranes. The presence of CO and other gases with H2 reduced the H2 permeation through the membrane by more than 50% and the effect of the other gases on the permeation reduction decreased in the following order: CO>CO2>N2. In a catalytic membrane reactor with helium sweep gas, the CO conversion was improved by about 65% compared with the catalyst without any membrane, and the CH4 formed from an undesirable side reaction was significantly reduced. Although the H2 permeation was severely reduced by surface phenomena such as blocking of available H2 dissociation sites by CO, CO2 and steam, the CO conversion was notably improved by the membrane presence. Moreover, the CO conversion was maintained at 98% even after 60 h of reaction and our Pd-Cu-Ni alloy membrane withstood the exposure of CO and the other gases. However, for separation of pure H2, a newly designed, catalyst-membrane system is required with better sealing and the ability to withstand the high operating pressure that drives the H2 permeation.
References
Wang X, Gorte RJ, Appl. Catal. A: Gen., 247(1), 157 (2003)
Shido T, Iwasawa Y, J. Catal., 141, 71 (1993)
Goerke O, Pfeifer P, Schubert K, Appl. Catal. A: Gen., 263(1), 11 (2004)
Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH, J. Catal., 229(2), 499 (2005)
Gorte RJ, Zhao S, Catal. Today, 104(1), 18 (2005)
Barbieri G, Brunetti A, Tricoli G, Drioli E, J. Power Sources, 182(1), 160 (2008)
Battersby S, Duke MC, Liu SM, Rudolph V, da Costa JCD, J. Membr. Sci., 316(1-2), 46 (2008)
Peters TA, Stange M, Klette H, Bredesen R, J. Power Sources, 316, 119 (2008)
Brunetti A, Caravella A, Barbieri G, Drioli E, J. Membr. Sci., 306(1-2), 329 (2007)
Iyoha OU, H2 production in palladium and palladium-copper membrane reactors at 1,173 K in the presence of H2S, Ph.D thesis, University of Pittsburgh (2007)
Ryi SK, Park JS, Kim SH, Cho SH, Kim DW, Um KY, Sep. Purif. Technol., 50(1), 82 (2006)
Takeguchi T, Manabe S, Kikuchi R, Eguchi K, Kanazawa T, Matsumoto S, Ueda W, Appl. Catal. A: Gen., 293, 91 (2005)
Ryi SK, Park JS, Kim SH, Kim DW, Cho KI, J. Membr. Sci., 318(1-2), 346 (2008)
Ryi SK, Park JS, Kim SH, Hong SC, Kim DW, Desalination, 200(1-3), 213 (2006)
Ryi SK, Park JS, Kim SH, Hong SC, Kim DW, Desalination, 200(1-3), 219 (2006)
Ryi SK, Park JS, Kim SH, Hong SC, Kim DW, Desalination, 200(1-3), 216 (2006)
Ryi SK, Park JS, Kim SH, Kim DW, Moon JW, J. Membr. Sci., 306(1-2), 261 (2007)
Ali JK, Newson EJ, Rippin DW, Chem. Eng. Sci., 49(13), 2129 (1994)
Amandusson H, Ekedahl LG, Dannetun H, Appl. Surf. Sci., 153(4), 259 (2000)
Hou K, Hughes R, J. Membr. Sci., 206(1-2), 119 (2002)
Unemoto A, Kaimai A, Sato K, Otake T, Yashiro K, Mizusaki J, Kawada T, Tsuneki T, Shirasaki Y, Yasuda I, Int. J. Hydro. Energy, 32, 2881 (2007)
Gielens FC, Knibbeler RJJ, Duysinx PFJ, Tong HD, Vorstman MAG, Keurentjes JTF, J. Membr. Sci., 279(1-2), 176 (2006)
Tosti S, Adrover A, Basile A, Camilli V, Chiappetta G, Violante V, Int. J. Hydro. Energy, 28, 105 (2003)
Shido T, Iwasawa Y, J. Catal., 141, 71 (1993)
Goerke O, Pfeifer P, Schubert K, Appl. Catal. A: Gen., 263(1), 11 (2004)
Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH, J. Catal., 229(2), 499 (2005)
Gorte RJ, Zhao S, Catal. Today, 104(1), 18 (2005)
Barbieri G, Brunetti A, Tricoli G, Drioli E, J. Power Sources, 182(1), 160 (2008)
Battersby S, Duke MC, Liu SM, Rudolph V, da Costa JCD, J. Membr. Sci., 316(1-2), 46 (2008)
Peters TA, Stange M, Klette H, Bredesen R, J. Power Sources, 316, 119 (2008)
Brunetti A, Caravella A, Barbieri G, Drioli E, J. Membr. Sci., 306(1-2), 329 (2007)
Iyoha OU, H2 production in palladium and palladium-copper membrane reactors at 1,173 K in the presence of H2S, Ph.D thesis, University of Pittsburgh (2007)
Ryi SK, Park JS, Kim SH, Cho SH, Kim DW, Um KY, Sep. Purif. Technol., 50(1), 82 (2006)
Takeguchi T, Manabe S, Kikuchi R, Eguchi K, Kanazawa T, Matsumoto S, Ueda W, Appl. Catal. A: Gen., 293, 91 (2005)
Ryi SK, Park JS, Kim SH, Kim DW, Cho KI, J. Membr. Sci., 318(1-2), 346 (2008)
Ryi SK, Park JS, Kim SH, Hong SC, Kim DW, Desalination, 200(1-3), 213 (2006)
Ryi SK, Park JS, Kim SH, Hong SC, Kim DW, Desalination, 200(1-3), 219 (2006)
Ryi SK, Park JS, Kim SH, Hong SC, Kim DW, Desalination, 200(1-3), 216 (2006)
Ryi SK, Park JS, Kim SH, Kim DW, Moon JW, J. Membr. Sci., 306(1-2), 261 (2007)
Ali JK, Newson EJ, Rippin DW, Chem. Eng. Sci., 49(13), 2129 (1994)
Amandusson H, Ekedahl LG, Dannetun H, Appl. Surf. Sci., 153(4), 259 (2000)
Hou K, Hughes R, J. Membr. Sci., 206(1-2), 119 (2002)
Unemoto A, Kaimai A, Sato K, Otake T, Yashiro K, Mizusaki J, Kawada T, Tsuneki T, Shirasaki Y, Yasuda I, Int. J. Hydro. Energy, 32, 2881 (2007)
Gielens FC, Knibbeler RJJ, Duysinx PFJ, Tong HD, Vorstman MAG, Keurentjes JTF, J. Membr. Sci., 279(1-2), 176 (2006)
Tosti S, Adrover A, Basile A, Camilli V, Chiappetta G, Violante V, Int. J. Hydro. Energy, 28, 105 (2003)