ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 3, 2009
Accepted October 12, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Characterization of an open biocathode microbial fuel cell for electricity generation and effluent polish

1Department of Environmental Engineering, Pusan National University, Busan 609-735, Korea 2School of Civil Engineering, Hefei University of Technology, Hefei 230092, China
cwkim@pusan.ac.kr
Korean Journal of Chemical Engineering, March 2010, 27(3), 828-835(8), 10.1007/s11814-010-0142-6
downloadDownload PDF

Abstract

The application of a biocathode in a microbial fuel cell (MFC) could be an alternative for the abiotic cathode MFCs that use noble metal catalysts and/or artificial mediators. An open biocathode MFC with oxygen reduction was investigated in this study and the roles of microbes in the cathode compartment were characterized. After 50-days operation, the MFC became stable and the power density of the MFC reached 2.55 W/m3 at an influent flowrate of 0.20 mL/min. The concentration of chemical oxygen demand (COD) was significantly reduced from 372 mg/L (in the influent) to 22 mg/L (in the final effluent) at an influent flowrate of 0.20 mL/min. Microbial community analysis demonstrated that four major groups of the clones were identified, where 28 clone types were derived from the cathode microorganisms, which included proteobacteria, Firmicutes, Bacteroidetes and unclassified bacteria. Among these phylatypes, Deltaproteobacteria was the most abundant division with 25.0% of total clones, which plays important roles in the cathodic electron transfer process. The presence of symmetric peaks could be detected in the effluent of the cathode compartment, which confirmed that the possible electron mediators were excreted by cathodic bacteria involved in the electron transfer process.

References

Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R, Trends Biotechnol., 22, 477 (2004)
Kim BH, Chang IS, Gadd GM, Appl. Microbiol. Biotechnol., 76(3), 485 (2007)
Logan B, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K, Eviron. Sci. Technol., 40, 5181 (2006)
Rabaey K, Ossieur W, Verhaege M, Verstraete W, Water Sci. Technol., 52, 515 (2005)
Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovely DR, Nat. Biotechnol., 20, 821 (2002)
Freguia S, Rabaey K, Yuan Z, Keller J, Water Res., 42, 1387 (2008)
Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I, Eviron. Sci. Technol., 40, 5193 (2006)
Bullen RA, Arnot TC, Lakeman JB, Walsh FC, Biosens. Bioelectron., 21, 2015 (2006)
Kargi F, Eker S, J. Chem. Technol. Biotechnol., 82(7), 658 (2007)
Logan B, Cheng S, Watson V, Estadt G, Eviron. Sci. Technol., 41, 3341 (2007)
Park HI, Mushtaq U, Perello D, Lee I, Cho SK, Star A, Yun M, Energy Fuel, 2, 2984 (2007)
Rosenbaum M, Zhao F, Schroder U, Scholz F, Angew. Chem. Int. Edit., 45, 6658 (2006)
Cheng S, Liu H, Logan BE, Eviron. Sci. Technol., 40, 364 (2006)
Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I, Electrochem. Commun., 7, 1405 (2005)
Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW, Appl. Microbiol. Biotechnol., 79(3), 379 (2008)
Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W, Eviron. Sci. Technol., 41, 7564 (2007)
Gralnick JA, Newman DK, Mol. Microbiol., 65, 1 (2007)
He Z, Angenent LT, Electronal., 18, 2009 (2006)
Bergel A, Feron D, Mollica A, Electrochem. Commun., 7, 900 (2005)
Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J, ISME J., 2, 519 (2008)
Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W, Eviron. Sci. Technol., 41, 3354 (2007)
Lefebvre O, Al-Mamun A, Ng HY, Water Sci. Technol., 58, 881 (2008)
Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH, Bioproc. Biosyst. Eng., 31, 315 (2008)
Aelterman P, Rabaey K, Clauwaert P, Verstraete W, Water Sci. Technol., 54, 9 (2006)
Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W, Appl. Environ. Microbiol., 70, 5373 (2004)
Bard AJ, Faulkner LR, Electrochemical method: Fundamentals and applications, 2nd Ed., John Wiley & Sons Ltd., New York (2001)
Silveira F, de Sa DS, da Rocha ZN, dos Santos JHZ, Macromol. React. Eng., 2, 253 (2008)
Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR, Microbial. Ecol., 48, 178 (2004)
Newman DK, Kolter R, Nature, 405, 94 (2000)
Schroder U, Phys. Chem. Chem. Phys., 9, 2619 (2007)
Freguia S, Rabaey K, Yuan Z, Keller J, Electrochim. Acta, 53(2), 598 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로