Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 5, 2009
Accepted March 4, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid
Department of Biotechnology, Dong-A University, Busan 604-714, Korea 1National Institute of Horticultural & Herbal Science, RDA, Suwon 441-853, Korea
chchung@donga.ac.kr
Korean Journal of Chemical Engineering, March 2010, 27(3), 930-935(6), 10.1007/s11814-010-0167-x
Download PDF
Abstract
Hydroxymethylfurfural (HMF) is an important chemical intermediate, but it has not been widely used because of low yields and high production costs. Sucrose is available at lower costs than other sugars and thus could be a biomass-derived abundant source for HMF production. In this study, a catalytic process for efficiently producing HMF from sucrose was scrutinized using 1-methyl-3-octylimidazolium chloride ([MOIM]Cl) as a reaction solvent, and HCl and metal chlorides (CrCl2 and Zncl2) as a catalyst. The rate of sucrose hydrolysis was relatively much faster in the reactions with HCl than without it. The hydrolysis of sucrose to fructose and glucose was affected by its reaction time. The mixed solvent of 50% [MOIM]Cl and 50% sucrose solution with HCl was more effective in HMF synthesis than single solvent alone. The addition of ZnCl2 and CrCl2 increased HMF yields by approximately 1.2-1.8-fold and its higher yield was found in the latter. The highest yield (82.0±3.9 wt%) in HMF production was achieved in the reaction mixture containing 5 g [MOIM]Cl and 5 mL of 20% sucrose solution with 0.5M HCl plus CrCl2 at 30 min reaction time. However, 0.3 M HCl was more effective for the HMF productivity than 0.5 M HCl.
References
Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA, Nature, 447, 982 (2007)
Lewkowski J, ARKIVOC, 1, (ARKAT-USA; ISSN 1424-6376), 17 (2001) (Website: www.arkat-usa.org/home.aspx?VIEW-MANUSCRIPT&MSID=403)
Szmant HH, Chundury DD, J. Chem. Tech. Biotechnol., 31, 135 (1981)
Binder JB, Raines RT, J. Am. Chem. Soc., 131(5), 1979 (2009)
Lansalot-Matras C, Moreau C, Catal. Commun., 4, 517 (2003)
Moreau C, Durand R, Alies F, Cotillon M, Frutz T, Theoleyre MA, Ind. Crops Products, 11, 237 (2000)
Moreau C, Finiels A, Vanoye L, J. Mol. Catal. A-Chem., 253(1-2), 165 (2006)
Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)
Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
Roman-Leshkov Y, Chheda JN, Dumesic JA, Science, 312, 1933 (2006)
Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411 (2007)
Antal MJ, Mok WSL, Richards GN, Carbohydr. Res., 199, 91 (1990)
Huber GW, Chheda JN, Barrett CJ, Dumesic JA, Science, 308, 1446 (2005)
Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumestic JA, Science, 322, 417 (2008)
Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD, Green Chem., 9, 63 (2007)
Huddleston JG, Visser AE, Reicher WM, Willauer HD, Broker GA, Rogers RD, Green Chem., 3, 156 (2001)
Kamavaram V, Reddy RG, Int. J. Therm. Sci., 47, 773 (2008)
Plechkova NV, Seddon KR, Chem. Soc. Rev., 37, 123 (2008)
Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G, J. Phys. Chem. B, 112(35), 11071 (2008)
Xu S, Huang C, Zhang J, Liu J, Chen B, Korean J. Chem. Eng., 26(4), 985 (2009)
Pito DS, Fonseca IM, Ramos AM, Vital J, Castanheiro JE, Bioresour. Technol., 100, 4546 (2009)
Kautz CF, Robinson AL, J. Amer. Chem. Soc., 50, 1022 (1928)
Farr GW, Heitz JR, J. Dental Res., 53, 516 (1974)
Li YH, Lu XY, Yuan L, Liu X, Biomass Bioenerg., 33(9), 1182 (2009)
Amarasekara AS, Ebede CC, Bioresour. Technol., 100, 5301 (2009)
Lewkowski J, ARKIVOC, 1, (ARKAT-USA; ISSN 1424-6376), 17 (2001) (Website: www.arkat-usa.org/home.aspx?VIEW-MANUSCRIPT&MSID=403)
Szmant HH, Chundury DD, J. Chem. Tech. Biotechnol., 31, 135 (1981)
Binder JB, Raines RT, J. Am. Chem. Soc., 131(5), 1979 (2009)
Lansalot-Matras C, Moreau C, Catal. Commun., 4, 517 (2003)
Moreau C, Durand R, Alies F, Cotillon M, Frutz T, Theoleyre MA, Ind. Crops Products, 11, 237 (2000)
Moreau C, Finiels A, Vanoye L, J. Mol. Catal. A-Chem., 253(1-2), 165 (2006)
Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)
Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
Roman-Leshkov Y, Chheda JN, Dumesic JA, Science, 312, 1933 (2006)
Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411 (2007)
Antal MJ, Mok WSL, Richards GN, Carbohydr. Res., 199, 91 (1990)
Huber GW, Chheda JN, Barrett CJ, Dumesic JA, Science, 308, 1446 (2005)
Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumestic JA, Science, 322, 417 (2008)
Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD, Green Chem., 9, 63 (2007)
Huddleston JG, Visser AE, Reicher WM, Willauer HD, Broker GA, Rogers RD, Green Chem., 3, 156 (2001)
Kamavaram V, Reddy RG, Int. J. Therm. Sci., 47, 773 (2008)
Plechkova NV, Seddon KR, Chem. Soc. Rev., 37, 123 (2008)
Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G, J. Phys. Chem. B, 112(35), 11071 (2008)
Xu S, Huang C, Zhang J, Liu J, Chen B, Korean J. Chem. Eng., 26(4), 985 (2009)
Pito DS, Fonseca IM, Ramos AM, Vital J, Castanheiro JE, Bioresour. Technol., 100, 4546 (2009)
Kautz CF, Robinson AL, J. Amer. Chem. Soc., 50, 1022 (1928)
Farr GW, Heitz JR, J. Dental Res., 53, 516 (1974)
Li YH, Lu XY, Yuan L, Liu X, Biomass Bioenerg., 33(9), 1182 (2009)
Amarasekara AS, Ebede CC, Bioresour. Technol., 100, 5301 (2009)