ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 15, 2010
Accepted March 28, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Surface functionalization of SBA-15 particles for ibuprofen delivery

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea 1New & Renewable Energy Division, Korea Institute of Energy Technology Evaluation & Planning, Seoul 135-280, Korea
Korean Journal of Chemical Engineering, July 2010, 27(4), 1087-1092(6), 10.1007/s11814-010-0225-4
downloadDownload PDF

Abstract

We have synthesized SBA-15 particles and functionalized their surface with different functional groups (amine, diamine, and sulfonic acid groups) to use them as carrier materials in drug delivery. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, and zeta potential measurements were used to characterize the synthesized particles. After surface functionalization, the surface of the sulfonic acid-functionalized particles was more acidic than that of the other particles. Using ibuprofen as a model drug, we found that the release rate increased at higher pH. Furthermore, the particles with the sulfonic acid groups exhibited higher release rate than those with the amine and diamine groups. We explained the difference in the release rate using different electrostatic interaction between drug and particle surface that was caused by the surface functionalization. These results should enable design of drug carrier materials based on the SBA-15 particles with the desired release rate.

References

Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature., 359, 710 (1992)
Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, J. Am. Chem. Soc., 114, 10834 (1992)
Hue QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD, Nature, 368(6469), 317 (1994)
Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY, Adv.Drug Deliver. Rev., 60, 1278 (2008)
Yang Q, Wang S, Fan P, Wang L, Di Y, Lin K, Xiao FS, Chem. Mater., 17, 5999 (2005)
Vallet-Regi M, Balas F, Arcos D, Angew. Chem. Int. Edit., 46, 7548 (2007)
Radin S, El-Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P, Biomaterials., 26, 1043 (2005)
Manzano M, Aina V, Arean CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regi M, Chem. Eng. J., 137(1), 30 (2008)
Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY, J. Am. Chem. Soc., 125(15), 4451 (2003)
Lee K, Lee D, Lee H, Kim CK, Wu Z, Lee K, Korean J. Chem. Eng., In press (2010)
Song SW, Hidajat K, Kawi S, Langmuir, 21(21), 9568 (2005)
Munoz B, Ramila A, Perez-Pariente J, Diaz I, Vallet-Regi M, Chem. Mater., 15, 500 (2003)
Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J, Chem. Mater., 13, 308 (2001)
Highton F, The Pharmaceutics of ibuprofen in Ibuprofen: A critical bibliographic review., Rainsford KD, Ed., Taylor and Francis, London (1999)
Brodie-Linder N, Dosseh G, Alba-Simonesco C, Audonnet F, Imperor-Clerc M, Mater. Chem. Phys., 108(1), 73 (2008)
Sun YY, Zhang ZQ, Wong CP, J. Colloid Interface Sci., 292(2), 436 (2005)
Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G, Adv. Mater., 16(21), 1959 (2004)
Qu F, Zhu G, Lin H, Sun J, Zhang D, Li S, Qiu S, Eur. J. Inorg. Chem., 2006, 3943 (2006)
Yakovlev GA, Biomed. Eng., 38, 292 (2004)
Lonnerdal B, J. Am. Coll. Nutr., 21, 218S (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로