ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 1, 2010
Accepted March 19, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Steam reforming of liquid petroleum gas over Mn-promoted Ni/γ-Al2O3 catalysts

Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University, Wonchun-dong Yeongtong-gu, Suwon 443-749, Korea 1Energy and Environment Laboratory, Samsung Advanced Institute of Technology (SAIT), P. O. Box 111, Suwon 440-600, Korea
edpark@ajou.ac.kr
Korean Journal of Chemical Engineering, July 2010, 27(4), 1132-1138(7), 10.1007/s11814-010-0212-9
downloadDownload PDF

Abstract

Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the_x000D_ least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques--N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis--were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn^(4+) species was observed for the most stable catalyst.

References

Song CS, Catal. Today, 77(1-2), 17 (2002)
Kolb G, Zapf R, Hessel V, Lowe H, Appl. Catal. A: Gen., 277(1-2), 155 (2004)
Ahmed K, Gamman J, Foger K, Solid State Ion., 152, 485 (2002)
Holladay JD, Jones EO, Phelps M, Hu JL, J. Power Sources, 108(1-2), 21 (2002)
Craciun R, Shereck B, Gorte RJ, Catal. Lett., 51(3-4), 149 (1998)
Ming QM, Healey T, Allen L, Irving P, Catal. Today, 77(1-2), 51 (2002)
Geissler K, Newson E, Vogel F, Truong TB, Hottinger P, Phys.Chem. Chem. Phys., 3, 289 (2001)
Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
Cheekatamarla PK, Finnerty CM, J. Power Sources, 160(1), 490 (2006)
Rostrup-Nielsen JR, Catal. Today., 18, 305 (1993)
Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
Richardson JT, Propp JL, J. Catal., 98, 457 (1986)
Wynblatt P, Gjoestein NA, Prog. Solid State Chem., 9, 21 (1975)
Zhang ZL, Verykios XE, Appl. Catal. A: Gen., 138(1), 109 (1996)
Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, Appl. Catal. A: Gen., 196(2), L167 (2000)
Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjastad AO, J. Catal., 249(2), 250 (2007)
Trimm DL, Catal. Today, 37(3), 233 (1997)
Wang SB, Lu GQM, Appl. Catal. B: Environ., 16(3), 269 (1998)
Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T, Appl. Catal. A: Gen., 144(1-2), 111 (1996)
Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73 (1996)
Chen YG, Yamazaki O, Tomishige K, Fujimoto K, Catal. Lett., 39(1-2), 91 (1996)
Chen YG, Tomishige K, Yokoyama K, Fujimoto K, J. Catal., 184(2), 479 (1999)
Tomishige K, Chen YG, Fujimoto K, J. Catal., 181(1), 91 (1999)
Christensen KO, Chen D, Lodeng R, Holmen A, Appl. Catal. A: Gen., 314(1), 9 (2006)
Hou ZY, Yokota O, Tanaka T, Yashima T, Appl. Catal. A: Gen., 253(2), 381 (2003)
Su BL, Guo SD, in Delmen, Formment GF(Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 325 (1999)
Trimm DL, Catal. Today, 49(1-3), 3 (1999)
Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
Natesakhawat S, Oktar M, Ozkan US, J. Mol. Catal. A-Chem., 241(1-2), 133 (2005)
Seok SH, Choi SH, Park ED, Han SH, Lee JS, J. Catal., 209(1), 6 (2002)
Chmielarz L, Kustrowski P, Dziembaj R, Thermochm. Acta., 395, 225 (2002)
Schulze K, Makowski W, Chyzi R, Appl Clay. Sci., 18, 59 (2001)
Kim JH, Suh DJ, Park TJ, Kim KL, Appl. Catal. A: Gen., 197(2), 191 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로