ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 25, 2009
Accepted November 8, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Investigation of equilibrium and kinetic parameters of methylene blue adsorption onto MCM-41

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India, Iran
pugal@iitg.ernet.in
Korean Journal of Chemical Engineering, July 2010, 27(4), 1184-1191(8), 10.1007/s11814-010-0177-8
downloadDownload PDF

Abstract

Mesoporous MCM-41 was synthesized at room temperature using tetraethoxysilane (TEOS) with cetyltrimethylammonium bromide (CTAB) and employed as an effective adsorbent for the adsorption of methylene blue dye from aqueous solution. The as-synthesized MCM-41 was calcined at 250 and 550 ℃ to study the relation between the surface area and pore volume with surfactant removal. The synthesized MCM-41 was characterized using thermo gravimetric_x000D_ analysis (TGA), X-ray diffraction (XRD) patterns, nitrogen adsorption/desorption isotherms and Fourier transform infrared (FT-IR) spectroscopy. The MCM-41 calcined at 550 ℃ showed higher surface area (1,059 m2 g-1) with pore volume of 0.89 ml g^(-1) and was used for the investigation of adsorption isotherms and kinetics. The experimental results indicated that the Freundlich and Redlich-Peterson models expressed the adsorption isotherm better than the Langmuir model. In addition, the influence of temperature and pH on adsorption was also investigated. The decrease_x000D_ in temperature or the increase in pH enhanced the adsorption of dye onto MCM-41. A maximum adsorption capacity of 1.5×10^(-4) mol g^(-1) was obtained at 30 ℃. The kinetic studies showed that the adsorption of dye on MCM-41 follows the pseudo-second-order kinetics.

References

Garg VK, Amita M, Kumar R, Gupta R, Dyes and Pigments., 63, 243 (2004)
Crini G, Bioresour. Technol., 97(9), 1061 (2006)
Ghosh D, Bhattacharyya KG, Appl. Clay Sci., 20, 295 (2002)
Liu CH, Wu JS, Chiu HC, Suen SY, Chu KH, Water Res., 41, 1491 (2007)
Namasivayam C, Sumithra S, J. Environ. Manage., 74, 207 (2005)
Kahr G, Madsen FT, Appl. Clay Sci., 9, 327 (1995)
Dogan M, Alkan M, Turkyilmaz A, Ozdemir Y, Water, Air,Soil Pollut., 184, 229 (2000)
Kannan N, Sundaram MM, Dyes and Pigments., 51, 25 (2001)
Gurses A, Karaca S, Dogar C, Bayrak R, Acikyildiz M, Yalcin M, J. Colloid Interface Sci., 269(2), 310 (2004)
Zhao XS, Lu GQ, Millar GJ, Ind. Eng. Chem. Res., 35(7), 2075 (1996)
Amama PB, Lim S, Ciuparu D, Pfefferle L, Haller GL, Microporous Mesoporous Mater., 81, 191 (2005)
Huang L, Huang Q, Xiao H, Eic M, Microporous Mesoporous Mater., 98, 330 (2007)
Lin HP, Cheng S, Mou CY, Microporous Mater., 10, 111 (1997)
Juang LC, Wang CC, Lee CK, Chemosphere., 64, 1920 (2006)
Lee CK, Liu SS, Juang LC, Wang CC, Lin KS, Lyu MD, J. Hazard. Mater., 147(3), 997 (2007)
Ho KY, McKay G, Yeung KL, Langmuir, 19(7), 3019 (2003)
Wang S, Li H, Microporous Mesoporous Mater., 97, 21 (2006)
Kumar D, Schumacher K, Hohenesche CF, Grun M, Unger KK, Colloids Surf., A., 187, 109 (2001)
Kaftan O, Acikel M, Eroglu AE, Shahwan T, Artok L, Ni C, Anal. Chim. Acta., 547, 31 (2005)
Ghiaci M, Abbaspur A, Kia R, Belve C, Trujillano R, Rives V, Vicente MA, Catal. Commun., 8, 49 (2007)
Vasanth Kumar K, Dyes and Pigments., 74, 595 (2006)
Langmuir I, J. Am. Chem. Soc., 27, 1139 (1915)
Freundlich H, J. Phys. Chem., 57, 385 (1907)
Redlich OJ, Peterson DL, J. Phys. Chem., 63, 1024 (1959)
Graham N, Chen XG, Jayaseelan S, Water Sci. Technol., 43, 245 (2001)
Tsang DCW, Hu J, Liu MY, Zhang W, Lai KCK, Lo IMC, Water, Air, Soil Pollut., 184, 141 (2007)
Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D, Ind. Eng. Chem. Res., 42(9), 1965 (2003)
Lin JX, Zhan SL, Fang MH, Qian XQ, J. Porous Mater., 14, 449 (2007)
Wang SB, Li H, Xu LY, J. Colloid Interface Sci., 295(1), 71 (2006)
Wang SB, Lu GQ, Carbon., 36, 283 (1998)
Noh JS, Schwarz JA, J. Colloid Interface Sci., 130, 157 (1989)
Gupta VK, Suhas, Ali I, Saini VK, Ind. Eng. Chem. Res., 43(7), 1740 (2004)
Lagergren S, Kungl. Sven. Veten. Akad. Handl., 24, 1 (1898)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로