Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 7, 2010
Accepted March 18, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A crossover random lattice fluid model for hydrocarbons and carbon dioxide
Department of Cosmetic Science, Chungwoon University, Chungnam 350-701, Korea
msshin@chungwoon.ac.kr
Korean Journal of Chemical Engineering, July 2010, 27(4), 1286-1290(5), 10.1007/s11814-010-0233-6
Download PDF
Abstract
A random lattice fluid model with finite coordination number is a versatile molecular-based lattice fluid equation of state, but this model fails to reproduce the non-analytical, singular behavior of fluids in the critical region. In this work, a method of obtaining the classical critical properties is presented in the random lattice fluid model. This model is combined with the crossover theory to obtain the crossover random lattice fluid model and to calculate the thermodynamic properties of hydrocarbons and carbon dioxide. This crossover random lattice fluid model presents much better agreement with experimental data near to and far from the critical region than the classical random lattice fluid model.
References
Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976)
Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2368 (1976)
Sengers JMHL, Fluid Phase Equilib., 158-160, 3 (1999)
Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
Burstyn HC, Sengers JV, Physical Review Letters., 45, 259 (1980)
Sengers JV, Levelt-Sengers JMH, Ann. Rev. Phys. Chem., 37, 189 (1986)
Kiselev SB, Friend DG, Fluid Phase Equilib., 162(1-2), 51 (1999)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38(12), 4993 (1999)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174 (2008)
Neau E, Fluid Phase Equilib., 203(1-2), 133 (2002)
Guggenheim EA, Mixtures., Clarendon Press (1952)
Panayiotou C, Vera JH, Polymer J., 14, 681 (1982)
Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532 (1987)
Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
Kiselev SB. Ely JF, Fluid Phase Equilib., 119, 8645 (2003)
Anisimov MA, Kiselev SB, Sengers JV, Tang S, Physica A., 188, 487 (1992)
Kang J, Yoo K, Kim H, Lee J, Yang D, Lee C, Int. J. Thermophys., 22, 487 (2001)
Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 469 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23, 479 (2006)
Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2368 (1976)
Sengers JMHL, Fluid Phase Equilib., 158-160, 3 (1999)
Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
Burstyn HC, Sengers JV, Physical Review Letters., 45, 259 (1980)
Sengers JV, Levelt-Sengers JMH, Ann. Rev. Phys. Chem., 37, 189 (1986)
Kiselev SB, Friend DG, Fluid Phase Equilib., 162(1-2), 51 (1999)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38(12), 4993 (1999)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174 (2008)
Neau E, Fluid Phase Equilib., 203(1-2), 133 (2002)
Guggenheim EA, Mixtures., Clarendon Press (1952)
Panayiotou C, Vera JH, Polymer J., 14, 681 (1982)
Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532 (1987)
Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
Kiselev SB. Ely JF, Fluid Phase Equilib., 119, 8645 (2003)
Anisimov MA, Kiselev SB, Sengers JV, Tang S, Physica A., 188, 487 (1992)
Kang J, Yoo K, Kim H, Lee J, Yang D, Lee C, Int. J. Thermophys., 22, 487 (2001)
Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 469 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23, 479 (2006)