ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 22, 2009
Accepted January 16, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Laminar heat transfer of non-Newtonian nanofluids in a circular tube

Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
etemad@cc.iut.ac.ir
Korean Journal of Chemical Engineering, September 2010, 27(5), 1391-1396(6), 10.1007/s11814-010-0250-3
downloadDownload PDF

Abstract

Forced convection heat transfer behavior of three different types of nanofluids flowing through a uniformly heated horizontal tube under laminar regime has been investigated experimentally. Nanofluids were made by dispersion of γ-Al2O3, CuO, and TiO2 nanoparticles in an aqueous solution of carboxymethyl cellulose (CMC). All nanofluids as well as the base fluid exhibit shear-thinning behavior. Results of heat transfer experiments indicate that both average and the local heat transfer coefficients of nanofluids are larger than that of the base fluid. The enhancement of heat transfer coefficient increases by increasing nanoparticle loading. At a given Peclet number and nanoparticle concentration the local heat transfer coefficient decreases by axial distance from the test section inlet. It seems that the thermal entry length of nanofluids is greater than the base fluid and becomes longer as nanoparticle concentration increases.

References

Maxwell JC, Electricity and magnetism., Clarendon Press, Oxford, U.K. (1873)
Choi SUS, in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 231, 99 (1995)
Godson L, Raja B, Mohan Lal D, Wongwises S, Renew. Sustainable Energy Rev., 14(2), 629 (2009)
Yu W, France DM, Routbort JL, Choi SUS, Heat Transf.Eng., 29(5), 432 (2008)
Li YJ, Zhou JE, Tung S, Schneider E, Xi SQ, Powder Technol., 196(2), 89 (2009)
Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151 (1998)
Wen DS, Ding YL, Int. J. Heat Mass Transf., 47(24), 5181 (2004)
Heris SZ, Etemad SG, Esfahany MN, Int. Commun. Heat Mass Transf., 33(4), 529 (2006)
He YR, Jin Y, Chen HS, Ding YL, Cang DQ, Lu HL, Int. J. Heat Mass Transf., 50(11-12), 2272 (2007)
Nguyen CT, Roy G, Gauthier C, Galanis N, App. Therm. Eng., 27(8-9), 1501 (2007)
Sundar LS, Sharma KV, Ramanathan S, Int. J. Nanotech.Appl., 2, 21 (2007)
Kulkarni DP, Namburu PK, Bargar HE, Das DK, Heat Transf. Eng., 29(12), 1027 (2008)
Sharma KV, Sundar LS, Sarma PK, Int. Commun. Heat Mass Transf., 36(5), 503 (2009)
Anoop KB, Sundararajan T, Das SK, Int. J. Heat Mass Transf., 52(9-10), 2189 (2009)
Rea U, McKrell T, Hu LW, Buongiorno J, Int. J. Heat Mass Transf., 52(7-8), 2042 (2009)
Hwang KS, Jang SP, Choi SUS, Int. J. Heat Mass Transf., 52(1-2), 193 (2009)
Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D, Int. J. Therm. Sci., 48(8), 1486 (2009)
Farajollahi B, Etemad SG, Hojjat M, Int. J. Heat Mass Transf., 53(1-3), 12 (2010)
Lai WY, Vinod S, Phelan PE, Ravi P, J. Heat Transf., 131(11), 112401 (2009)
Chandrasekar M, Suresh S, Chandra Bose A, Exp. Therm. Fluid Sci., 34(2), 122 (2010)
Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966 (2008)
Ding Y, Alias H, Wen D, Williams RA, Int. Commun. Heat Mass Transf., 49, 240 (2006)
Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K, Int. J. Heat Mass Transf., 52(21-22), 5090 (2009)
Xuan Y, Li Q, J. Heat Transf., 125(1), 151 (2003)
Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu GF, Int. J. Heat Mass Transf., 48(6), 1107 (2005)
Yu WH, France DM, Smith DS, Singh D, Timofeeva EV, Routbort JL, Int. J. Heat Mass Transf., 52(15-16), 3606 (2009)
Torii S, Yang WJ, J. Heat Transf., 131 (2009)
Sharma A, Chakraborty S, Int. J. Heat Mass Transf., 51(19-20), 4875 (2008)
Laskar JM, Philip J, Raj B, Phys. Rev. E - Statistical, Nonlinear; and Soft Matter Physics., 78(3) (2008)
Wang XQ, Mujumdar AS, Int. J. Therm. Sci., 46, 1 (2007)
Wang XQ, Mujumdar AS, Brazilian J. Chem. Eng., 25(4), 361 (2008)
Kakac S, Pramuanjaroenkij A, Int. J. Heat Mass Transf., 52(13-14), 3187 (2009)
Chandrasekar M, Suresh S, Chandra Bose A, Exp. Therm. Fluid Sci., 34(2), 210 (2010)
Incropera FP, DEWitt DP, Fundamentals of heat and mass transfer, Fourth Ed., John Wiley & Sons, New York (1996)
Kutz M, Heat transfer calculations, McGraw-Hill, New York, NY (2006)
Hojjat M, Etemad SG, Bagheri R, Thibault J, in 8th World Congress of Chemical Engineering, Montreal, Canada (2009)
Hojjat M, Etemad SG, Bagheri R, Thibault J, in The 6th Int. Chemical Engineering Congress & Exhibition, Kish Island, Iran (2009)
Xuan YM, Roetzel W, Int. J. Heat Mass Transf., 43(19), 3701 (2000)
Shah RK, in 3rd National Heat and Mass Transf., Indian Institute of Technology, Bombay, India, 1, HTM (1975)
Heris SZ, Esfahany MN, Etemad G, Numer. Heat Transf.Part A., 52(11), 1043 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로