Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 1, 2009
Accepted December 18, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Characteristics of electrodeposited CoWP capping layers using alkali-metal-free precursors
Department of Chemical Engineering and Division of Energy Systems Research, Ajou University, Suwon 443-749, Korea 1Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
changkoo@ajou.ac.kr
Korean Journal of Chemical Engineering, September 2010, 27(5), 1596-1600(5), 10.1007/s11814-010-0235-2
Download PDF
Abstract
CoWP films, used as a capping layer for a copper interconnection, were electrodeposited using alkalimetal-free precursors, and the effect of the electrolyte concentration on the film characteristics such as the thickness, composition, and microstructure was investigated. The current density and the film thickness increased with the concentration of cobalt, tungsten, and phosphorous precursors. When the cobalt ion concentration in the electrolyte was increased from 0.01 to 0.09 M, the cobalt content in the film increased from 67 to 89 at%, while the tungsten and phosphorous contents decreased from 16 to 0.7 and 17 to 10 at%, respectively. The tungsten and phosphorous contents also increased as their corresponding concentrations increased in the electrolyte. Microstructural analyses showed that the tungsten and phosphorous content in the film greatly affected the crystallinity of the CoWP films electrodeposited using alkali-metal-free precursors.
Keywords
References
Dubin VM, Shachamdiamand Y, Zhao B, Vasudev PK, Ting CH, J. Electrochem. Soc., 144(3), 898 (1997)
Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H, IBM J. Res. Dev., 42 (1998)
Shacham-Diamand Y, Dedhia A, Hoffstetter D, Oldham WG, J. Electrochem. Soc., 140, 2427 (1993)
Petrov N, Sverdlov Y, Shacham-Diamand Y, J. Electrochem. Soc., 149(4), C187 (2002)
Shacham-Diamand Y, Lopatin S, Electrochim. Acta, 44(21-22), 3639 (1999)
Einati H, Bogush V, Sverdlov Y, Rosenberg Y, Shacham-Diamand Y, Microelectron. Eng., 82, 623 (2005)
Osaka T, Takano N, Kurokawa T, Ueno K, Electrochem. Solid State Lett., 5(1), C7 (2002)
Shacham-Diamand Y, J. Electron. Mater., 30, 336 (2001)
Shacham-Diamand Y, Sverdlov Y, Petrov N, J. Electrochem. Soc., 148(3), C162 (2001)
Dulal SMSI, Yun HJ, Shin CB, Kim CK, J. Electrochem. Soc., 154(10), D494 (2007)
Dulal SMSI, Yun HJ, Shin CB, Kim CK, Electrochim. Acta, 53(2), 934 (2007)
Dulal SMSI, Kim TH, Shin CB, Kim CK, J. Alloy.Compd., 461, 382 (2008)
Dulal SMSI, Yun HJ, Shin CB, Kim CK, Appl. Surf. Sci., 255(11), 5795 (2009)
Nakano H, Itabashi T, Akahoshi H, J. Electrochem. Soc., 152(3), C163 (2005)
Osaka T, Takano N, Kurokawa T, Kaneko T, Ueno K, Surf.Coat. Technol., 169, 124 (2003)
O’Sullivan EJ, Schrott AJ, Paunovic M, Sambucetti CJ, Marino JR, Bailey PJ, Kaja S, Semkow KW, IBM J. Res. Dev., 42, 607 (1998)
Siu CL, Man HC, Yeung CH, Surf. Coat. Technol., 200, 2223 (2005)
Deal EB, IEEE Trans. Electron. Devices., ED-27, 606 (1980)
Gambino J, Wynne J, Gill J, Mongeon S, Meatyard D, Lee B, Bamnolker H, Hall L, Li N, Hernandez M, Little P, Hamed M, Ivanov I, Gan CL, Microelectron. Eng., 83, 2059 (2006)
Armyanov S, Valova E, Franquet A, Dille J, Delplancke JL, Hubin A, Steenhaut O, Kovacheva D, Tatchev D, Vassilev T, J. Electrochem. Soc., 152(9), C612 (2005)
Brenner A, Electrodeposition of alloys: Principles and practices., Academic Press, New York (1963)
Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H, IBM J. Res. Dev., 42 (1998)
Shacham-Diamand Y, Dedhia A, Hoffstetter D, Oldham WG, J. Electrochem. Soc., 140, 2427 (1993)
Petrov N, Sverdlov Y, Shacham-Diamand Y, J. Electrochem. Soc., 149(4), C187 (2002)
Shacham-Diamand Y, Lopatin S, Electrochim. Acta, 44(21-22), 3639 (1999)
Einati H, Bogush V, Sverdlov Y, Rosenberg Y, Shacham-Diamand Y, Microelectron. Eng., 82, 623 (2005)
Osaka T, Takano N, Kurokawa T, Ueno K, Electrochem. Solid State Lett., 5(1), C7 (2002)
Shacham-Diamand Y, J. Electron. Mater., 30, 336 (2001)
Shacham-Diamand Y, Sverdlov Y, Petrov N, J. Electrochem. Soc., 148(3), C162 (2001)
Dulal SMSI, Yun HJ, Shin CB, Kim CK, J. Electrochem. Soc., 154(10), D494 (2007)
Dulal SMSI, Yun HJ, Shin CB, Kim CK, Electrochim. Acta, 53(2), 934 (2007)
Dulal SMSI, Kim TH, Shin CB, Kim CK, J. Alloy.Compd., 461, 382 (2008)
Dulal SMSI, Yun HJ, Shin CB, Kim CK, Appl. Surf. Sci., 255(11), 5795 (2009)
Nakano H, Itabashi T, Akahoshi H, J. Electrochem. Soc., 152(3), C163 (2005)
Osaka T, Takano N, Kurokawa T, Kaneko T, Ueno K, Surf.Coat. Technol., 169, 124 (2003)
O’Sullivan EJ, Schrott AJ, Paunovic M, Sambucetti CJ, Marino JR, Bailey PJ, Kaja S, Semkow KW, IBM J. Res. Dev., 42, 607 (1998)
Siu CL, Man HC, Yeung CH, Surf. Coat. Technol., 200, 2223 (2005)
Deal EB, IEEE Trans. Electron. Devices., ED-27, 606 (1980)
Gambino J, Wynne J, Gill J, Mongeon S, Meatyard D, Lee B, Bamnolker H, Hall L, Li N, Hernandez M, Little P, Hamed M, Ivanov I, Gan CL, Microelectron. Eng., 83, 2059 (2006)
Armyanov S, Valova E, Franquet A, Dille J, Delplancke JL, Hubin A, Steenhaut O, Kovacheva D, Tatchev D, Vassilev T, J. Electrochem. Soc., 152(9), C612 (2005)
Brenner A, Electrodeposition of alloys: Principles and practices., Academic Press, New York (1963)