ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 9, 2009
Accepted February 10, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A novel mathematical method for prediction of rapid expansion of supercritical solution (RESS) processed ibuprofen powder size distribution

Science & Research Branch, Department of Chemical Engineering, I.A.U., Tehran, Iran 1Research Institute of Petroleum Industry, Tehran, Iran 2South Branch, Graduate Factuality, Chemical Engineering Department, I.A.U., Tehran, Iran 3Central Branch, Department of Chemical Engineering, I.A.U., Tehran, Iran
Korean Journal of Chemical Engineering, September 2010, 27(5), 1601-1605(5), 10.1007/s11814-010-0265-9
downloadDownload PDF

Abstract

A fundamental understanding of the interplay among the variables involved in a rapid expansion of supercritical solution (RESS) process is necessary in order to achieve control of product within the desired specifications. A model is proposed where the experimental data are fitted to a 2-D Sp-line equation that results in a mathematical pattern matching function that can easily be processed analytically to yield a continuous motion estimate. This model presents a novel promising method to interpolate between any two experimental results. Comparison of the mean particles size values which are calculated as a function of nozzle temperature (T(N)) and pre-expansion pressure (P(pre-expansion)) with the experimental data, results in a ±8% accuracy. The optimum operational point that leads to the minimum mean particles diameter (40 nm) is determined through mathematical optimization of this equation and confirmed experimentally._x000D_ Furthermore, 600 more values of mean particle size are predicted by varying the nozzle temperature and dissolution pressure and the results are presented in the form of a 3-dimesional curve.

References

Sun YP, Guduru R, Lin F, Whiteside T, Ind. Eng. Chem. Res., 39(12), 4663 (2000)
Rogers TL, Johnston KP, Williams RO, Drug. Dev. Ind.Pharm., 27, 1003 (2001)
Mohamed RS, Debenetti PG, Prud’home RK, AIChE J., 35, 325 (2002)
Sethia S, Squinlante E, J. Pharm. Sci., 91, 1948 (2002)
Thakur R, Gupta RB, Ind. Eng. Chem. Res., 44(19), 7380 (2005)
Chang CJ, Radolph AD, AIChE J., 35, 1876 (1989)
Bozic PS, Srcic S, Kerk J, Int. J. Pharmacology., 48, 543 (1997)
Pathak P, Meziam MJ, Desai T, Sun YP, J. Supercrit. Fluids, 37(3), 279 (2006)
Lele AK, Shine AD, Ind. Eng. Chem. Res., 33(6), 1476 (1994)
Matson DW, Petersen RC, Smith RD, J. Mater. Sci., 22, 1919 (1987)
Reverchon E, Pallado P, J. Supercrit. Fluids, 9(4), 216 (1996)
Debenetti PG, Tom JW, Kwauk X, Yeo SD, Fluid Phase Equilibr., 82, 311 (1993)
Chang CJ, Radolph AD, AIChE J., 35, 1876 (1989)
Matson DW, Folton JL, Peterson RC, Smith RD, Material Lett., 10, 429 (1986)
Kosal E, Lee CH, Holder GD, J. Supercrit. Fluids., 5, 169 (1992)
Ksibi H, Subra P, Adv. Powder Technol., 7, 210 (1996)
Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK, Ind. Eng. Chem. Res., 39(12), 4794 (2000)
Byun HS, Park YJ, Lim JS, J. Appl. Polym. Sci., 107(2), 1124 (2008)
Helfgen B, Hils P, Holzknecht C, Turk M, Schaber K, J. Aerosol Sci., 32(3), 295 (2001)
Hirunsit P, Huang Z, Srinophakun T, Charoenchaitrakool A, Kawi S, Powder Technol., 154(2-3), 83 (2005)
Kayrak D, Akman U, Hortacsu O, J. Supercrit. Fluids, 26(1), 17 (2003)
Reverchon E, Pallado P, J. Supercrit. Fluids, 9(4), 216 (1996)
Fages J, Lochard H, Letourneau JJ, Sauceau M, Rodier E, Powder Technol., 141(3), 219 (2004)
Yildiz N, Tuna S, Doker O, Calimli A, J. Supercrit. Fluids, 41(3), 440 (2007)
Alvareza GA, Baumannb W, Adaimeb MB, Neitzelb F, Chemical & Pharmaceutical Bulletin., 641, 97 (2005)
Kim JH, Paxton TE, Tomasko DL, Biotechnol. Prog., 12(5), 650 (1996)
Matson DW, Folton JL, Peterson RC, Smith RD, Ind. Eng. Chem. Res., 26, 2298 (1987)
Turk M, Hils P, Helfgen B, Schaber K, Martin HJ, Wahl MA, J. Supercrit. Fluids, 22(1), 75 (2002)
Kawashima Y, York P, Advanced Drug Delivery Reviews., 60, 297 (2008)
Zabihi F, Akbarnejad MM, Vaziri A, Arjomand M, Seyfkordi AA, IJCCE., 28, 441 (2009)
Alessi P, Cortesi A, Kikic I, Foster NR, Macnaughton SJ, Colombo I, Ind. Eng. Chem. Res., 35(12), 4718 (1996)
Meziani MJ, Pathak P, Hurezeanue R, Angew. Chem. Int. Ed., 43, 704 (2004)
Wang JD, Chen JZ, Yang YR, J. Supercrit. Fluids, 33(2), 159 (2005)
Tandya A, Dehghani F, Foster NR, J. Supercrit. Fluids, 37(3), 272 (2006)
Foster N, Dehghani F, Warwick B, AAPS Pharm. Sci., 5, 77 (2003)
Yeo SD, Kiran E, J. Supercrit. Fluids, 34(3), 287 (2005)
Gupta AK, Gupta M, Biomaterials., 26, 3995 (2005)
Sun YP, Meziani MJ, Pathak P, J. Am. Chem. Soc., 12, 10824 (2004)
Galvao LC, Novae AG, Souza de Cursi JE, Computers and Operations Research., 33, 93 (2006)
Vaiola F, Coe RL, Owen K, Ann. Biomed. Eng., 36, 1942 (2008)
Spath H, Biomed. Eng., 36, 1942 (2008)
Afsharian S, Keihani K, Applied mathematics in chemical engineering, Puranpazhuh Publications, Tehran (2005)
Spath H, Biomed. Eng., 36, 1942 (2008)
Kharattian R, Nikazar M, Applied mathematics in chemical engineering, Amir Kabir University Publications, Tehran (2006)
Matlab, 7.5.0.342, R 2007 b.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로