ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 27, 2010
Accepted March 4, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimization of medium components for D-ribose production by transketolase-deficient Bacillus subtilis NJT-1507

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology andPharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China
Korean Journal of Chemical Engineering, November 2010, 27(6), 1725-1729(5), 10.1007/s11814-010-0288-2
downloadDownload PDF

Abstract

Statistical experimental designs were used to optimize the composition of culture media for the production of D-ribose by Bacillus subtilis. A fractional factorial design 2(5-2) was used to determine medium components that significantly affected D-ribose production. The concentrations of glucose and (NH4)2SO4 were the significant factors. Central composite design and response surface methodology were then used to estimate the quadratic response surface_x000D_ and determine the factor levels for maximum production of D-ribose. Finally, the optimal medium composition was obtained (g/L): glucose, 172.75; (NH4) 2SO4, 13.2; yeast powder, 4; corn steep liquor, 8 and MnSO4, 0.5. This optimization strategy increased D-ribose production from 73.21 g/L to 88.57 g/L, an increase of 22% compared with the original conditions. The D-ribose production yield to glucose concentration was also enhanced from 0.37 g/g to 0.52 g/g. Confirmatory_x000D_ experiments were also performed to demonstrate the accuracy of the model. Under the optimal medium using ammonia to control pH in a 5 L fermenter, the D-ribose yield was increased to 95.28 g/L after 3 days of cultivation at 37 ℃.

References

Park YC, Choi JH, Bennett GN, Seo JH, J. Biotechnol., 121, 508 (2006)
Sasajima KI, Yoneda M, Vandamme EJ, Elsevier Science Publishers, New York, 167 (1989)
Salerno C, Eufemia PD, Finocchiaro R, Celli M, Spalice A, Iannetti P, Crifoo C, Giardini O, BBA-Mol. Basis. Dis., 1453, 135 (1999)
Dewulf P, Vandamme EJ, Appl. Microbiol. Biotechnol., 48(2), 141 (1997)
Cooper J, Salomon RG, Tetrahedron. Lett., 31, 3813 (1990)
John WH, Joseph O, Steven S, Robert N, Marina S, Craig M, Mette S, Alfredo GS, Elba MH, Int. Immunopharmacol., 14, 555 (1992)
Schneider HJ, Steffen R, Dietrich P, Andreas H, Int. J. Cardiol., 125, 49 (2008)
Zimmer HG, Basic. Res. Cardiol., 87, 303 (1992)
Teitelbaum JC, Johnson C, StCyr JA, J. Alt. Comp. Med., 12, 857 (2006)
Herrick J, Shecterle LM, StCyr JA, Med. Hypoth., 72, 499 (2009)
Wulf P, Vandamme EJ, Adv. Appl. Microbiol., 44, 167 (1997)
Park YC, Kim SG, Kyungmoon P, Kelvin HL,Seo JH, Appl. Microbiol. Biotechnol., 66, 397 (2004)
Cui JD, Korean J. Chem. Eng., 27, 171 (2010)
Zhuang YP, Chen B, Chu J, Zhang SL, Process Biochem., 41, 405 (2006)
Nguyen HH, Jang NJ, Choi SH, Korean J. Chem. Eng., 26(1), 1 (2009)
Xiao ZJ, Liu PH, Qin JY, Xu P, Appl. Microbiol. Biotechnol., 74(1), 61 (2007)
Shih IL, Lin CY, Wu JY, Hsieh C, Korean J. Chem. Eng., 26(6), 1652 (2009)
Tang XJ, He GQ, Chen QH, Zhang XY, Ali MAM, Bioresour. Technol., 93(2), 175 (2004)
Virginia LP, Jonathan AG, Eur. J. Biochem., 134, 105 (1983)
Wulf P, PhD thesis, University of Gent, Belgium (1995)
Wulf P, Soetaert W, Schwengers D, Vandamme EJ, J. Appl. Microbiol., 83, 25 (1997)
Haaland PD, New York, Marcel Dekker Incorporation (1989)
Chen XC, Bai JX, Bioresource. Technol., 100, 919 (2009)
Li Y, Liu Z, Zhao H, Biochem. Eng. J., 34, 82 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로