Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 20, 2009
Accepted March 2, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorption of carbon dioxide using polyethyleneimine modified silica gel
Center for Fuel Cell Research, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea 1Department of Chemical Engineering, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-751, Korea
rowkho@inha.ac.kr
Korean Journal of Chemical Engineering, November 2010, 27(6), 1910-1915(6), 10.1007/s11814-010-0284-6
Download PDF
Abstract
To find an ideal adsorbent for carbon dioxide capture, a new polyethyleneimine modified silica gel material was synthesized with a simple procedure. Three silica gel materials with various particle sizes (15, 25 and 40-63 μm) were prepared and functionalized with polyethyleneimine. The carbon dioxide adsorption amounts of modified silica gel and non-modified silica gel were calculated using a mass balance equation at three different temperatures (298.15, 308.15 and 318.15 K), respectively, and the influence of gas pressure and particle size on adsorption was discussed. Experimental data showed that the carbon dioxide adsorption capacity of modified silica gel was better than non-modified silica gel, and the adsorption capacity gradually decreased with increasing particle size. The smaller particle size (15 μm) PEI modified silica gel had the largest adsorption capacity, at 298.15 K, and the adsorption amounts of various particle sizes of PEI-silica better fit the Langmuir isotherm model.
Keywords
References
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, J. Environ. Sci., 20, 14 (2008)
Lee BD, Kim DM, Cho JH, Park SW, Korean J. Chem. Eng., 26(3), 818 (2009)
Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86, 2204 (2007)
Rojey A, Torp TA, Oil Gas Sci. Technol., 60, 445 (2005)
Yamasaki A, J. Chem. Eng. Jpn., 36(4), 361 (2003)
Sakamoto Y, Nagata K, Yogo K, Yamada K, Micropor. Mesopor. Mater., 101, 303 (2007)
Knowles GP, Graham JV, Delaney SW, Chaffee AL, Fuel Process. Technol., 86(14-15), 1435 (2005)
Knowles GP, Delaney SW, Chaffee AL, Stud. Surf. Sci. Catal., 156, 887 (2005)
Gargiulo N, Caputo D, Colella C, Stud. Surf. Sci. Catal., 170, 1938 (2007)
Yin CY, Aroua MK, Daud WMAW, Mater. Chem. Phys., 112(2), 417 (2008)
Hong H, Lee S, Kim T, Chung M, Choi C, Appl. Surf. Sci., 255(12), 6103 (2009)
Maketon W, Ogden KL, Chemosphere, 75, 206 (2009)
Aroua MK, Daud WMAW, Yin CY, Adinata D, Sep. Purif. Technol., 62(3), 609 (2008)
Oztekin N, Alemdar A, Gungor N, Erim FB, Materials Letters, 55, 73 (2002)
Chanda M, Rempel GL, React. Polym., 19, 213 (1993)
Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 39(11), 4346 (2000)
Satyapal S, Filburn T, Trela J, Strange J, Energy Fuels, 15(2), 250 (2001)
Zelenak V, Badanicova M, Halamova D, Cejka J, Zukal A, Murafa N, Goerigk G, Chem. Eng. J., 144(2), 336 (2008)
Claesson PM, Paulson OEH, Blomberg E, Burns NL, Colloids Surf. A Physicochem. Eng. Aspects, 341, 123 (1997)
Amara M, Kerdjoudj H, Talanta, 60, 991 (2003)
Palmer CP, McCarney JP, J. Chromatogr. A, 1044, 159 (2004)
Chibowski S, Patkowski J, Grzadka E, J. Colloid Interface Sci., 329(1), 1 (2009)
Son W, Choi JS, Ahn WS, Micropor. Mesopor. Mater., 113, 31 (2008)
IUPAC, Pure Appl. Chem., 57, 603 (1985)
Lee BD, Kim DM, Cho JH, Park SW, Korean J. Chem. Eng., 26(3), 818 (2009)
Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86, 2204 (2007)
Rojey A, Torp TA, Oil Gas Sci. Technol., 60, 445 (2005)
Yamasaki A, J. Chem. Eng. Jpn., 36(4), 361 (2003)
Sakamoto Y, Nagata K, Yogo K, Yamada K, Micropor. Mesopor. Mater., 101, 303 (2007)
Knowles GP, Graham JV, Delaney SW, Chaffee AL, Fuel Process. Technol., 86(14-15), 1435 (2005)
Knowles GP, Delaney SW, Chaffee AL, Stud. Surf. Sci. Catal., 156, 887 (2005)
Gargiulo N, Caputo D, Colella C, Stud. Surf. Sci. Catal., 170, 1938 (2007)
Yin CY, Aroua MK, Daud WMAW, Mater. Chem. Phys., 112(2), 417 (2008)
Hong H, Lee S, Kim T, Chung M, Choi C, Appl. Surf. Sci., 255(12), 6103 (2009)
Maketon W, Ogden KL, Chemosphere, 75, 206 (2009)
Aroua MK, Daud WMAW, Yin CY, Adinata D, Sep. Purif. Technol., 62(3), 609 (2008)
Oztekin N, Alemdar A, Gungor N, Erim FB, Materials Letters, 55, 73 (2002)
Chanda M, Rempel GL, React. Polym., 19, 213 (1993)
Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 39(11), 4346 (2000)
Satyapal S, Filburn T, Trela J, Strange J, Energy Fuels, 15(2), 250 (2001)
Zelenak V, Badanicova M, Halamova D, Cejka J, Zukal A, Murafa N, Goerigk G, Chem. Eng. J., 144(2), 336 (2008)
Claesson PM, Paulson OEH, Blomberg E, Burns NL, Colloids Surf. A Physicochem. Eng. Aspects, 341, 123 (1997)
Amara M, Kerdjoudj H, Talanta, 60, 991 (2003)
Palmer CP, McCarney JP, J. Chromatogr. A, 1044, 159 (2004)
Chibowski S, Patkowski J, Grzadka E, J. Colloid Interface Sci., 329(1), 1 (2009)
Son W, Choi JS, Ahn WS, Micropor. Mesopor. Mater., 113, 31 (2008)
IUPAC, Pure Appl. Chem., 57, 603 (1985)