Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 8, 2010
Accepted May 19, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
An analysis of CH4/N2 rich biogas production, fuel treatment process and microturbine application
Green Growth Lab., Korea Electric Power Research Institute, Daejeon 305-380, Korea 1Department of Environmental Engineering, Chungnam National University, Daejeon 305-764, Korea
jkpark@kepri.re.kr
Korean Journal of Chemical Engineering, January 2011, 28(1), 126-132(7), 10.1007/s11814-010-0329-x
Download PDF
Abstract
Biogas usually contains CH4 and CO2 as main components with the ratio of 6 : 4, and its composition varies with wide range depending on digester conditions. In addition to concentration change of each constituent, biogas composition could be changed due to the variations in the organic matter treatment process. The aim of the study is to analyze the production and application to a microturbine system of CH4/N2 rich biogas produced from Gong-Ju wastewater_x000D_
treatment plant. CH4/N2 rich biogas is produced due to the internal wastewater recirculation. The internal wastewater recirculation is intended to enhance NO3- removal without additional carbon source input. As a result, the digester was shown to be the highest contributor for nitrogen removal and average CH4 concentration was lowered compared to the typical biogas composition. Nitrate removal rate was influenced by the internal recirculation ratio. Content of N2_x000D_
has no effect on biogas clean-up system performance. Besides, adaptability of CH4/N2 rich biogas to microturbine was satisfactory with very low NOx and SO2 concentration in microturbine exhaust gas. Influence of high N2 concentration of biogas on NOx concentration was limited due to the low combustion temperature.
References
Biradar PM, Roy SB, D’Souza SF, Pandit AB, Bioresour. Technol., 101, 1788 (2010)
Akunna J, Bizeau C, Moletta R, Bernet N, Heduit A, Water Sci. Technol., 297-306 305, 30 (1994)
Rousseau P, Steyer JP, Volcke EIP, Bernet N, Beline F, Water Sci. Technol., 58, 133 (2008)
An YY, Yang FL, Chua HC, Wong FS, Wu B, Bioresour. Technol., 99(9), 3714 (2008)
Littlejohn D, Majeski AJ, Tonse S, Castaldini C, Cheng RK, Proc. Combust. Inst., 29, 1115 (2002)
Cohe C, Chauveau C, Gokalp I, Kurtulusb DF, Proc. Combust. Inst., 32, 1803 (2008)
Il Seo J, Il Kim N, Shin HD, Combust. Flame, 153(3), 355 (2008)
Kumar P, Mishra DP, Energy Conv. Manag., 49(10), 2698 (2008)
Fujimori T, Riechelmann D, Sato J, Symp. (Int.) Combust., 27, 1153 (1998)
Zeeuw WD, Lettinga G, Accumulation of digested sewage sludge during start-up of an upflow anaerobic sludge blanket reactor., Proc. of 35th Perdue industrial waste conference, Lewis publishers, Chelsen, MI, 39-47 (1980)
LO KV, LIAO PH, GAO YC, Bioresour. Technol., 47(2), 153 (1994)
McDonald CF, Appl. Therm. Eng., 23, 1467 (2003)
Pilavachi PA, Appl. Therm. Eng., 22, 2005 (2002)
Wilson DA, Lyons KM, Fuel., 87, 406 (2008)
Wellinger A, Lindberg A, Biogas upgrading and utilization., IEA Bioenergy Task 24 (1999)
Deed C, Gronow J, Rosevear A, Braithwaite P, Smith R, Stanley P, Guidance on gas treatment technologies for landfill gas engines., Environment Agency (2004)
Dewil R, Appels L, Baeyens J, Energy Convers. Manage., 47, 1718 (2006)
Walker JF, Helfrich MV, Donalson TL, Environ. Progr., 8, 97 (1989)
Bernet N, Delegenes N, Akunna JC, Delegenes JP, Moleta R, Water Res., 34, 611 (2000)
Jeong BM, Ahn ES, Yun JH, Lee CH, Choi DK, Sep. Purif. Technol., 55(3), 335 (2007)
Petrov AY, Zaltash A, Rizy DT and Labinov SD, Proc. of 19th Annual International Pittsburgh Conference, September 23-27, 2002, Pittsburgh, PA (2002)
Akunna J, Bizeau C, Moletta R, Bernet N, Heduit A, Water Sci. Technol., 297-306 305, 30 (1994)
Rousseau P, Steyer JP, Volcke EIP, Bernet N, Beline F, Water Sci. Technol., 58, 133 (2008)
An YY, Yang FL, Chua HC, Wong FS, Wu B, Bioresour. Technol., 99(9), 3714 (2008)
Littlejohn D, Majeski AJ, Tonse S, Castaldini C, Cheng RK, Proc. Combust. Inst., 29, 1115 (2002)
Cohe C, Chauveau C, Gokalp I, Kurtulusb DF, Proc. Combust. Inst., 32, 1803 (2008)
Il Seo J, Il Kim N, Shin HD, Combust. Flame, 153(3), 355 (2008)
Kumar P, Mishra DP, Energy Conv. Manag., 49(10), 2698 (2008)
Fujimori T, Riechelmann D, Sato J, Symp. (Int.) Combust., 27, 1153 (1998)
Zeeuw WD, Lettinga G, Accumulation of digested sewage sludge during start-up of an upflow anaerobic sludge blanket reactor., Proc. of 35th Perdue industrial waste conference, Lewis publishers, Chelsen, MI, 39-47 (1980)
LO KV, LIAO PH, GAO YC, Bioresour. Technol., 47(2), 153 (1994)
McDonald CF, Appl. Therm. Eng., 23, 1467 (2003)
Pilavachi PA, Appl. Therm. Eng., 22, 2005 (2002)
Wilson DA, Lyons KM, Fuel., 87, 406 (2008)
Wellinger A, Lindberg A, Biogas upgrading and utilization., IEA Bioenergy Task 24 (1999)
Deed C, Gronow J, Rosevear A, Braithwaite P, Smith R, Stanley P, Guidance on gas treatment technologies for landfill gas engines., Environment Agency (2004)
Dewil R, Appels L, Baeyens J, Energy Convers. Manage., 47, 1718 (2006)
Walker JF, Helfrich MV, Donalson TL, Environ. Progr., 8, 97 (1989)
Bernet N, Delegenes N, Akunna JC, Delegenes JP, Moleta R, Water Res., 34, 611 (2000)
Jeong BM, Ahn ES, Yun JH, Lee CH, Choi DK, Sep. Purif. Technol., 55(3), 335 (2007)
Petrov AY, Zaltash A, Rizy DT and Labinov SD, Proc. of 19th Annual International Pittsburgh Conference, September 23-27, 2002, Pittsburgh, PA (2002)