ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 2, 2010
Accepted May 23, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhanced adenosine triphosphate production by Saccharomyces cerevisiae using an efficient energy regeneration system

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China
Korean Journal of Chemical Engineering, January 2011, 28(1), 178-183(6), 10.1007/s11814-010-0331-3
downloadDownload PDF

Abstract

The process of ATP biosynthesis from adenosine catalyzed by Saccharomyces cerevisiae was studied using an efficient energy regeneration system. A fractional factorial design (2^(9-5)) was used to evaluate the effects of different components in the medium. Magnesium chloride, toluene, and acetaldehyde were found to significantly influence ATP production. The concentrations of the three factors were then optimized using central composition design and response surface analysis. Based on the second-order polynomial model obtained from the experiments, the optimal parameters were obtained as follows: adenosine 20 g/L; glucose 67 g/L; S. cerevisiae cells 250 g/L; magnesium chloride 4.37 g/L; potassium dihydrogen phosphate 67 g/L; toluene 1.40 mL/L; acetaldehyde 2.67 mL/L; pH 7.0; and temperature 37.0 ℃. Under the condition, the yield and concentration of ATP reached 97.5% and 37 g/L, respectively. The yield was nearly_x000D_ 10% higher than the level before optimization and the concentration increased two-fold. In addition, the utilization efficiency of energy after optimization increased nearly 6%.

References

Lee HC, Lee SD, Sohng JK, Liou K, J. Biochem. Mol.Biol., 37, 503 (2004)
Zhou JW, Liu LM, Shi ZP, Du GC, Chen J, Biotechnol.Adv., 27, 94 (2009)
Larsson C, Nilsson A, Blomberg A, Gustafsson L, J. Bacteriol., 179, 7243 (1997)
Hara KY, Shimodate N, Ito M, Baba T, Mori H, Metab. Eng., 11, 1 (2009)
Larsson C, Pahlman IL, Gustafsson L, Yeast., 16, 797 (2000)
Yuroff AS, Sabat G, Hickey WJ, Appl. Environ. Microbiol., 69, 7401 (2003)
Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L, Biochemistry., 40, 3016 (2001)
Kipnis Y, Papo N, Haran G, Horovitz A, Proc. Natl. Acad. Sci.USA., 104, 3119 (2007)
Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S, Nat. Biotechnol., 23, 975 (2005)
Mendum ML, Smith LT, Appl. Environ. Microbiol., 68, 813 (2002)
Tochikura T, J. Ferment. Technol., 45, 511 (1967)
Kadowaki S, Yano T, Tachiki T, Tochikura T, J. Ferment.Bioeng., 68, 417 (1989)
Asada M, Nakanishi K, Matsuno R, Kariya Y, Kimura A, Kamikubo T, Agric. Biol. Chem., 42, 1533 (1978)
Shiomi N, Fukuda H, Murata K, Kimura A, Appl. Microbiol. Biotechnol., 42(5), 730 (1995)
Shimosaka M, Fukuda Y, Kimura A, Agric. Biol. Chem., 45, 1025 (1981)
Kimura A, Adv. Biochem. Eng./Biotechnol., 33, 29 (1986)
Shimosaka M, Fukuda Y, Murata K, Kimura A, J. Bacteriol., 152, 98 (1982)
Meikle AJ, Reed RH, Gadd GM, FEMS Microbiol. Lett., 62, 89 (1991)
Li Y, Hugenholtz J, Chen J, Lun SY, Appl. Microbiol. Biotechnol., 60(1-2), 101 (2002)
Hua Q, Shimizu K, J. Biotechnol., 68, 135 (1999)
Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR, J. Bacteriol., 184, 3909 (2002)
Liu LM, Chen J, Li HZ, Li Y, Prog. Biochem. Biophys., 32, 251 (2005)
Liu LM, Li Y, Du GC, Chen J, J. Appl. Microbiol., 100(5), 1043 (2006)
Liao X, Deng T, Zhu Y, Du G, Chen J, J. Appl. Microbiol., 104(2), 345 (2008)
Henriksen CM, Christensen LH, Nielsen J, Villadsen J, J.Biotechnol., 45, 149 (1996)
Candela T, Fouet A, Mol. Microbiol., 60, 1091 (2006)
Blank LM, McLaughlin RL, Nielsen LK, Biotechnol. Bioeng., 90(6), 685 (2005)
Chen XC, Bai JX, Cao JM, Li ZJ, Xiong J, Zhang L, Hong Y, Ying HJ, Bioresource Technol., 100, 919 (2009)
Ying HJ, Chen XC, Cao HP, Xiong J, Hong Y, Bai JX, Li ZJ, Appl. Microbiol. Biotechnol., 84(4), 677 (2009)
Montgomery DC, Runger GC, Hubele NF, Engineering statistics., John Wiley and Sons Inc., Hoboken, New Jersey (2001)
Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364 (2009)
Cui JD, Korean J. Chem. Eng., 27(1), 174 (2010)
Fujio T, Furuya A, Appl. Microbiol. Biotechnol., 21, 143 (1985)
Fujio T, Furuya A, J. Ferment. Technol., 61, 261 (1983)
Serrano R, Transport across yeast vacuolar and plasma membranes, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1991)
Takeshige K, Ouchi K, J. Ferment. Bioeng., 79(1), 11 (1995)
Stanley GA, Hobley TJ, Pamment NB, Biotechnol. Bioeng., 53(1), 71 (1997)
Vriesekoop F, Barber AR, Pamment NB, Biotechnol. Lett., 29(7), 1099 (2007)
Barber AR, Vriesekoop F, Pamment NB, Enzyme Microb. Technol., 30(2), 240 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로