Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 18, 2010
Accepted October 5, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Oriented crystallization of xanthine derivatives sublimated on self-assembled monolayers
Department of Chemical and Environmental Engineering, Soongsil University, Seoul 156-743, Korea
iwkim@ssu.ac.kr
Korean Journal of Chemical Engineering, January 2011, 28(1), 232-238(7), 10.1007/s11814-010-0444-8
Download PDF
Abstract
The oriented crystallization of caffeine and theobromine on self-assembled monolayers (SAMs) is reported. The SAMs were prepared by reacting 1-decanethiol, 11-mercapto-1-undecanol, or 11-mercaptoundecanoic acid on flat Au surfaces to form methyl, hydroxyl, or carboxylic acid functionalities on the substrates. Crystallization was conducted by sublimating the xanthine alkaloids on the SAMs. X-ray diffraction and morphology observation/simulation were combined to identify the preferred orientation of caffeine and theobromine crystals. Also, the identified crystal orientation was examined through molecular models to understand the nature of the interfacial interactions that direct the nucleation process. CH/π interaction as well as strong hydrogen bonding appeared to act as the specific interactions to control the molecular orientation of caffeine and theobromine in stereochemically determined manners that persisted during the crystallization process. More importantly, the stability of the orientational regulation showed a clear correlation to the cohesiveness of the xanthine molecular layer parallel to the nucleating substrate. We believe this indicates that the structural coherence of the precursors or nuclei of the crystallization is essential to effectively utilize the interfacial interactions in a cooperative manner to firmly control the crystal orientation.
References
Lowenstam HA and Weiner S, On Biomineralization, Oxford University Press, New York (1989)
Weiner S, Addadi L, J. Mater. Chem., 7, 689 (1997)
Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F, Nat. Mater., 2, 577 (2003)
Li X, Chang WC, Chao YJ, Wang R, Chang M, Nano Lett., 4, 613 (2004)
Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G, Nature., 412, 819 (2001)
Mann S, Biomineralization: Principles and concepts in bioinorganic materials chemistry, Oxford University Press, New York (2001)
Fu GS, Qiu R, Orme CA, Morse DE, De Yoreo JJ, Adv.Mater., 17, 2578 (2005)
Kim IW, Darragh MR, Orme C, Evans JS, Cryst. Growth Des., 6, 5 (2006)
Kim IW, Giocondi JL, Orme C, Collino S, Evans JS, Cryst.Growth Des., 4, 1154 (2008)
Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE, Nature, 381(6577), 56 (1996)
Amos FF. Evans JS, Biochemistry., 48, 1331 (2009)
Weiner S, Traub W, Febs Lett., 111, 301 (1980)
Addadi L, Weiner S, Proc. Natl. Acad. Sci. USA., 82, 4110 (1985)
Orme CA, Noy A, Wierzbicki A, McBride MT, Grantham M, Teng HH, Dove PM, DeYoreo JJ, Nature., 411, 775 (2001)
Aizenberg J, Black AJ, Whitesides GH, J. Am. Chem. Soc., 121(18), 4500 (1999)
Han YJ, Wysocki LM, Thanawala MS, Siegrist T, Aizenberg J, Angew. Chem. Int. Ed., 44, 2386 (2005)
Carter PW, Ward MD, J. Am. Chem. Soc., 115, 11521 (1993)
Givargizov EI, Kliya MO, Melik-Adamyan VR, Grebenko AI, DeMattei RC, Feigelson RS, J. Cryst. Growth., 12, 758 (1991)
Pokroy B, Chernow VF, Aizenberg J, Langmuir, 25(24), 14002 (2009)
Kang JF, Zaccaro J, Ulman A, Myerson A, Langmuir, 16(8), 3791 (2000)
Desiraju GR and Steiner T, The weak hydrogen bond in structural chemistry and biology, Oxford University Press, New York (1999)
Steiner T, Koellner G, J. Mol. Biol., 295, 535 (2001)
Bowes KF, Clark IP, Cole JM, Gourlay M, Grifn AME, Mahon MF, Ooi L, Parker AW, Raithby PR, Sparkes HA, Towrieb M, Cryst. Eng. Commun., 7, 259 (2005)
Bessel CA, See RF, Jameson DL, Churchill MR, Takeuchi KJ, J. Chem. Soc., Dalton Trans., 3123 (1992)
Ford KA, Ebisuzaki Y, Boyle PD, Acta Cryst., C54, 1980 (1998)
Enright GD, Terskikh VV, Brouwer DH, Ripmeester JA, Cryst. Growth Des., 7, 1406 (2007)
Kim IW, Robertson RE, Zand R, Adv. Mater., 15(9), 709 (2003)
Qian YL, Yang GH, Yu JJ, Jung TA, Liu GY, Langmuir, 19(15), 6056 (2003)
Yang YC, Chang TY, Lee YL, J. Phys. Chem. C., 111, 4014 (2007)
Mendoza SM, Arfaoui I, Zanarini S, Paolucci F, Rudolf P, Langmuir, 23(2), 582 (2007)
Kumar S, Subramanian K, Srinivasan R, Rajagopalan K, Steiner T, J. Mol. Struct., 471, 251 (1998)
Weiner S, Addadi L, J. Mater. Chem., 7, 689 (1997)
Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F, Nat. Mater., 2, 577 (2003)
Li X, Chang WC, Chao YJ, Wang R, Chang M, Nano Lett., 4, 613 (2004)
Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G, Nature., 412, 819 (2001)
Mann S, Biomineralization: Principles and concepts in bioinorganic materials chemistry, Oxford University Press, New York (2001)
Fu GS, Qiu R, Orme CA, Morse DE, De Yoreo JJ, Adv.Mater., 17, 2578 (2005)
Kim IW, Darragh MR, Orme C, Evans JS, Cryst. Growth Des., 6, 5 (2006)
Kim IW, Giocondi JL, Orme C, Collino S, Evans JS, Cryst.Growth Des., 4, 1154 (2008)
Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE, Nature, 381(6577), 56 (1996)
Amos FF. Evans JS, Biochemistry., 48, 1331 (2009)
Weiner S, Traub W, Febs Lett., 111, 301 (1980)
Addadi L, Weiner S, Proc. Natl. Acad. Sci. USA., 82, 4110 (1985)
Orme CA, Noy A, Wierzbicki A, McBride MT, Grantham M, Teng HH, Dove PM, DeYoreo JJ, Nature., 411, 775 (2001)
Aizenberg J, Black AJ, Whitesides GH, J. Am. Chem. Soc., 121(18), 4500 (1999)
Han YJ, Wysocki LM, Thanawala MS, Siegrist T, Aizenberg J, Angew. Chem. Int. Ed., 44, 2386 (2005)
Carter PW, Ward MD, J. Am. Chem. Soc., 115, 11521 (1993)
Givargizov EI, Kliya MO, Melik-Adamyan VR, Grebenko AI, DeMattei RC, Feigelson RS, J. Cryst. Growth., 12, 758 (1991)
Pokroy B, Chernow VF, Aizenberg J, Langmuir, 25(24), 14002 (2009)
Kang JF, Zaccaro J, Ulman A, Myerson A, Langmuir, 16(8), 3791 (2000)
Desiraju GR and Steiner T, The weak hydrogen bond in structural chemistry and biology, Oxford University Press, New York (1999)
Steiner T, Koellner G, J. Mol. Biol., 295, 535 (2001)
Bowes KF, Clark IP, Cole JM, Gourlay M, Grifn AME, Mahon MF, Ooi L, Parker AW, Raithby PR, Sparkes HA, Towrieb M, Cryst. Eng. Commun., 7, 259 (2005)
Bessel CA, See RF, Jameson DL, Churchill MR, Takeuchi KJ, J. Chem. Soc., Dalton Trans., 3123 (1992)
Ford KA, Ebisuzaki Y, Boyle PD, Acta Cryst., C54, 1980 (1998)
Enright GD, Terskikh VV, Brouwer DH, Ripmeester JA, Cryst. Growth Des., 7, 1406 (2007)
Kim IW, Robertson RE, Zand R, Adv. Mater., 15(9), 709 (2003)
Qian YL, Yang GH, Yu JJ, Jung TA, Liu GY, Langmuir, 19(15), 6056 (2003)
Yang YC, Chang TY, Lee YL, J. Phys. Chem. C., 111, 4014 (2007)
Mendoza SM, Arfaoui I, Zanarini S, Paolucci F, Rudolf P, Langmuir, 23(2), 582 (2007)
Kumar S, Subramanian K, Srinivasan R, Rajagopalan K, Steiner T, J. Mol. Struct., 471, 251 (1998)