Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 13, 2010
Accepted June 4, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Thermodynamic modeling of CO2 solubility in ionic liquid ([C(n)-mim] [Tf2N]; n=2, 4, 6, 8) with using Wong-Sandler mixing rule, Peng-Rabinson equation of state (EOS) and differential evolution (DE) method
1Chemical Engineering Department, School of Chemical & Petroleum Engineering, Shiraz University, Shiraz, Iran 2Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
a.forghani@hotmail.com
Korean Journal of Chemical Engineering, January 2011, 28(1), 246-251(6), 10.1007/s11814-010-0345-x
Download PDF
Abstract
Environmental and safety regulations are creating increasing interest in ionic liquids which have been used as alternative solvents for a wide range of industrial applications. Knowing the phase equilibrium of these materials is very important. In this study, the solubility of CO2 in ionic liquid 1-alkyl-3 methylimidazolium bis (trifluoromethylsulfonyl) imide ([C(n)-mim][Tf2N]; n=2, 4, 6, 8) was probed with the Peng-Robinson (PR) equation of state (EOS) and Wong-Sandler mixing rule and van Laar model for excess Gibbs free energy. The differential evolution (DE) optimization_x000D_
method was applied to optimize the binary interaction parameter and activity coefficients. Moreover, binary interaction parameters and activity coefficients were presented as mathematical correlations that for various materials have depended on temperature. Our results showed that average absolute derivations of our proposed model were less than other existing models, and by using the aforesaid method better prediction could be achieved.
Keywords
References
Marsh KN, Deev A, Wu ACT, Tran E, Klamt A, Korean J. Chem. Eng., 19(3), 357 (2002)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Andreu JS, Vega LF, J. Phys. Chem. B, 112(48), 15398 (2008)
Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99 (2009)
Oh DJ, Lee BC, Korean J. Chem. Eng., 23(5), 800 (2006)
Raeissi S, Peters CJ, J. Chem. Eng. Data., 54, 382 (2009)
Peng DY. Robinson DB, Ind. Eng. Chem. Fundam., 15(1), 59 (1976)
Valderrama JO, Ind. Eng. Chem. Res., 42(8), 1603 (2003)
Blanchard LA, Brennecke JF, Ind. Eng. Chem. Res., 40(1), 287 (2001)
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
Anthony JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 106(29), 7315 (2002)
Shariati A, Peters CJ, J. Supercrit. Fluids, 25(2), 109 (2003)
Shariati A, Peters CJ, J. Supercrit. Fluids., 34, 173 (2005)
Costantini M, Toussaint VA, Shariati A, Peters CJ, Kikic I, J. Chem. Eng. Data., 50, 52 (2005)
Kroon M, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters C, J. Chem. Eng. Data., 50, 173 (2005)
Oh DJ, Lee BC, Korean J. Chem. Eng., 23(5), 800 (2006)
Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99 (2009)
Shin EK, Lee BC, J. Chem. Eng. Data., 53, 2728 (2008)
Lachwa J, Morgado P, Esperanca JMSS, Guedes HJR, Canongia Lopes JN, Rebelo LPN, J.Chem. Eng. Data., 51, 2215 (2006)
Shariati A, Gutkowski K, Peters CJ, AIChE J., 51(5), 1532 (2005)
Shiflett MB, Yokozeki A, Fluid Phase Equilib., 294(1-2), 105 (2010)
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho AP, J. Supercrit. Fluids., 52, 258 (2010)
Ren W, Sensenich B, Scurto AM, J. Chem. Thermodynamics., 42, 305 (2010)
Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS, Fluid Phase Equilibria., 228-229, 439 (2005)
Peng DY, Robinson DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Chen WY and Liu J, Mathcad Modules for Supercritical Fluid Extraction Based on Mixing Rules Appendix A- Mixing Rules (2007)
Dahl S, Michelsen ML, AIChE J., 36, 1829 (1990)
Orbey H and Sandler SI, Cambridge University Press, Cambridge England (1998)
Prausnitz JM, Lichtenthaler RN and de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall, NJ (1999)
Poling BE, Prausnitz JM and O’Connell JP, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, NY (2001)
Eslamimanesh A, Esmaeilzadeh F, Fluid Phase Equilib., 291(2), 141 (2010)
Eslamimanesh A, A.Shariati Presented at VIII Iberoamerican conference on Phase Equilibria and Fluid Properties for process design (Equifase), Praia da Rocha, Portugal, Oct. (2009)
Storn R, J. Global Optim., 11, 341 (1997)
Price K and Storn R, Home page of differential evolution as on April 25. URL: http://www.ICSI.Berkeley.edu/storn/code.html.
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Andreu JS, Vega LF, J. Phys. Chem. B, 112(48), 15398 (2008)
Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99 (2009)
Oh DJ, Lee BC, Korean J. Chem. Eng., 23(5), 800 (2006)
Raeissi S, Peters CJ, J. Chem. Eng. Data., 54, 382 (2009)
Peng DY. Robinson DB, Ind. Eng. Chem. Fundam., 15(1), 59 (1976)
Valderrama JO, Ind. Eng. Chem. Res., 42(8), 1603 (2003)
Blanchard LA, Brennecke JF, Ind. Eng. Chem. Res., 40(1), 287 (2001)
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
Anthony JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 106(29), 7315 (2002)
Shariati A, Peters CJ, J. Supercrit. Fluids, 25(2), 109 (2003)
Shariati A, Peters CJ, J. Supercrit. Fluids., 34, 173 (2005)
Costantini M, Toussaint VA, Shariati A, Peters CJ, Kikic I, J. Chem. Eng. Data., 50, 52 (2005)
Kroon M, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters C, J. Chem. Eng. Data., 50, 173 (2005)
Oh DJ, Lee BC, Korean J. Chem. Eng., 23(5), 800 (2006)
Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99 (2009)
Shin EK, Lee BC, J. Chem. Eng. Data., 53, 2728 (2008)
Lachwa J, Morgado P, Esperanca JMSS, Guedes HJR, Canongia Lopes JN, Rebelo LPN, J.Chem. Eng. Data., 51, 2215 (2006)
Shariati A, Gutkowski K, Peters CJ, AIChE J., 51(5), 1532 (2005)
Shiflett MB, Yokozeki A, Fluid Phase Equilib., 294(1-2), 105 (2010)
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho AP, J. Supercrit. Fluids., 52, 258 (2010)
Ren W, Sensenich B, Scurto AM, J. Chem. Thermodynamics., 42, 305 (2010)
Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS, Fluid Phase Equilibria., 228-229, 439 (2005)
Peng DY, Robinson DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Chen WY and Liu J, Mathcad Modules for Supercritical Fluid Extraction Based on Mixing Rules Appendix A- Mixing Rules (2007)
Dahl S, Michelsen ML, AIChE J., 36, 1829 (1990)
Orbey H and Sandler SI, Cambridge University Press, Cambridge England (1998)
Prausnitz JM, Lichtenthaler RN and de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall, NJ (1999)
Poling BE, Prausnitz JM and O’Connell JP, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, NY (2001)
Eslamimanesh A, Esmaeilzadeh F, Fluid Phase Equilib., 291(2), 141 (2010)
Eslamimanesh A, A.Shariati Presented at VIII Iberoamerican conference on Phase Equilibria and Fluid Properties for process design (Equifase), Praia da Rocha, Portugal, Oct. (2009)
Storn R, J. Global Optim., 11, 341 (1997)
Price K and Storn R, Home page of differential evolution as on April 25. URL: http://www.ICSI.Berkeley.edu/storn/code.html.
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)