ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 8, 2010
Accepted June 8, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3

School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea 1Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea 2National Institute of Environmental Research, Incheon 404-708, Korea
Korean Journal of Chemical Engineering, January 2011, 28(1), 267-271(5), 10.1007/s11814-010-0351-z
downloadDownload PDF

Abstract

Silver nanoparticles (AgNPs), potent antibiotic materials, have been found to cause cell-membrane damage and produce reactive oxygen species (ROS). The resultant structural change in the cell-membrane could cause an increase in cell permeability of silver ions and AgNPs. To address this issue further, in-vivo and in-vitro cytotoxicity testing of as-made nanomaterials was conducted to quantify and assess their nanotoxicity. Considering the behavior of AgNPs in the environment, toxicity may be reflected by differences in their physicochemical properties (size, agglomeration rate, adsorption properties on humic acid) dependency and toxicity depression. Therefore, we investigated the effect of the cellular uptake of AgNPs with the kinetics of agglomeration and adsorption. The amount of agglomerated and adsorbed AgNPs with sizes of <14 nm was higher than that for AgNPs with sizes of 90 and 140 nm. For 90 and 140 nm sized AgNPs, adsorption was more significant than agglomeration. It is noteworthy that the normal concept that smaller sized AgNPs are taken up more readily may be in error in cases of interactions of abiotic factors.

References

Meng H, Xia T, George S, Nel AE, ACS NANO., 3, 1620 (2009)
Pal S, Tak YK, Myong SJ, Appl. Environ. Micorbio., 73, 1712 (2007)
Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Sigg L, Behra R, Environ. Sci. Technol., 42, 8959 (2008)
Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J, Sectrochim. Acta A., 63, 189 (2006)
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Nanomed., 3, 95 (2007)
Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB, Small., 4, 746 (2008)
Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177 (2004)
Morens JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Nanotehchnology., 16, 2346 (2005)
Nowack B, Bucheli TD, Environ. Poll., 150, 5 (2007)
Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RH, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR, Environ. Toxicol. Chem., 27, 1825 (2008)
Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther M, Stark WJ, Environ. Sci. Technol., 39, 9370 (2005)
Lee SM, Song KC, Lee BS, Korean J. Chem. Eng., 27(2), 688 (2010)
Liu JF, Zhao ZS, Jiang GB, Environ. Sci. Technol., 42, 6949 (2008)
Fabrega J, Fawcett SR, Renshaw JC, Lead JR, Environ.Sci. Technol., 43, 7285 (2009)
Jiang J, Oberdoster G, Biswas P, J. Nanopart. Res., 11, 77 (2009)
Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F, Part. Fibre. Toxcol., 5, 14 (2008)
Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V, Nanotoxicol., 2, 144 (2008)
Ho YS, Wase DAJ, Forster CF, Environ. Technol., 17, 71 (1996)
Muller NC, Nowack B, Environ. Sci. Technol., 42, 4447 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로