Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 27, 2010
Accepted May 19, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Chaotic behavior of in-line bubbles rising with coalescences in non-Newtonian fluids: A multiscale analysis
State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 1Laboratoire des Sciences du G´enie Chimique, Nancy-Universit´e, CNRS,1, rue Grandville, BP 451 54001 Nancy cedex, France
Korean Journal of Chemical Engineering, January 2011, 28(1), 56-63(8), 10.1007/s11814-010-0327-z
Download PDF
Abstract
The nonlinear dynamics of in-line bubbles rising with coalescence in non-Newtonian Carboxymethylcellulose sodium (CMC) fluids was studied through the techniques such as the multiresolution signal decomposition and the chaotic time series analysis. The temporary signals of bubble passages collected by an optical sensing device at different heights were investigated by a 12-level wavelet decomposition and the scalewise characteristics of bubble motion were extracted and analyzed. The chaotic time series analysis distinguished the periodicity or the deterministic chaos of bubble motion successsfully. The calculation of Kolmogorov entropy proves that in the ranges of experimental heights and gas flowrates, the bubble rising dynamics becomes more chaotic with the increase of height, and reaches the maximum chaotic extent in a certain height, while with the further increase of height, the chaotic extent decreases slowly. With the increase of gas flowrate, at the lower height, the bubble rising dynamics changes from periodicity to deterministic chaos, and at the higher heights it reaches the maximum chaotic extent in a certain gas flowrate; however, for both cases, it has little change in the higher gas flowrates. Moreover, with the increase of CMC concentration, the bubble rising dynamics becomes less chaotic when the height is beyond a certain value.
References
Acharya A, Ulbrecht J, AIChE J., 24, 348 (2000)
Kee DD, Carreau PJ, Mordarski J, Chem. Eng. Sci., 41, 2273 (1986)
Kee DD, Chhabra RP, Dajan A, J. Non-Newtonian Fluid Mech., 37, 1 (1990)
Li HZ, Mouline Y, Choplin L, Midoux N, Int. J. Multiph. Flow, 23(4), 713 (1997)
Li HZ, Frank X, Funfschilling D, Diard P, Phys. Lett. A., 325, 43 (2004)
Mallat S, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674 (1989)
Bakshi BR, Zhong H, Jiang P, Fan LS, Trans. IChE., 73a, 608 (1995)
Lu XS, Li HZ, Chem. Eng. J., 75(2), 113 (1999)
Li JH, Powder Technol., 111(1-2), 50 (2000)
Zhou HS, Lu JD, Lin LA, Chem. Eng. Sci., 55(4), 839 (2000)
Ren JQ, Mao QM, Li JH, Lin WG, Chem. Eng. Sci., 56(3), 981 (2001)
Nam W, Han GY, Korean J. Chem. Eng., 22(6), 964 (2005)
Kang SH, Son SM, Kang Y, Bae JW, Jun KW, Korean J. Chem. Eng., 25(4), 897 (2008)
Ajbar A, Al-Masry W, Ali E, Chem. Eng. Process., 48(1), 101 (2009)
Coutanceau M, Hajjam M, Appl. Sci. Res., 38, 199 (1982)
Funfschilling D, Li HZ, Chem. Eng. Res. Des., 84(A10), 875 (2006)
Ma HG, Han CZ, Front. Electr. Electron. Eng. China., 1, 111 (2006)
Ma HG, Han CZ, J. Electron., 22, 605 (2005)
Grassberger P, Procaccia I, Phys. Rev. Lett., 50, 346 (1983)
Kee DD, Carreau PJ, Mordarski J, Chem. Eng. Sci., 41, 2273 (1986)
Kee DD, Chhabra RP, Dajan A, J. Non-Newtonian Fluid Mech., 37, 1 (1990)
Li HZ, Mouline Y, Choplin L, Midoux N, Int. J. Multiph. Flow, 23(4), 713 (1997)
Li HZ, Frank X, Funfschilling D, Diard P, Phys. Lett. A., 325, 43 (2004)
Mallat S, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674 (1989)
Bakshi BR, Zhong H, Jiang P, Fan LS, Trans. IChE., 73a, 608 (1995)
Lu XS, Li HZ, Chem. Eng. J., 75(2), 113 (1999)
Li JH, Powder Technol., 111(1-2), 50 (2000)
Zhou HS, Lu JD, Lin LA, Chem. Eng. Sci., 55(4), 839 (2000)
Ren JQ, Mao QM, Li JH, Lin WG, Chem. Eng. Sci., 56(3), 981 (2001)
Nam W, Han GY, Korean J. Chem. Eng., 22(6), 964 (2005)
Kang SH, Son SM, Kang Y, Bae JW, Jun KW, Korean J. Chem. Eng., 25(4), 897 (2008)
Ajbar A, Al-Masry W, Ali E, Chem. Eng. Process., 48(1), 101 (2009)
Coutanceau M, Hajjam M, Appl. Sci. Res., 38, 199 (1982)
Funfschilling D, Li HZ, Chem. Eng. Res. Des., 84(A10), 875 (2006)
Ma HG, Han CZ, Front. Electr. Electron. Eng. China., 1, 111 (2006)
Ma HG, Han CZ, J. Electron., 22, 605 (2005)
Grassberger P, Procaccia I, Phys. Rev. Lett., 50, 346 (1983)