Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 4, 2010
Accepted March 2, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation of asymmetric polysulfone/polyimide blended membranes for CO2 separation
Department of Chemical Engineering, Universiti Teknologi PETRONAS, Tronoh 31750, Malaysia 1Ceramic Engineering Division, Govt. College of Engineering and Ceramic Technology, West Bengal University of Technology, 73, A.C. Banerje Lane, Kolkata 700010, India 2Chemical Engineering Department, King Khalid University, Abha, Kingdom of Saudi Arabia
sikanderrr@hotmail.com
Korean Journal of Chemical Engineering, October 2011, 28(10), 2050-2056(7), 10.1007/s11814-011-0053-1
Download PDF
Abstract
Asymmetric Flat sheet polysulfone-polyimide (PSF-PI) blended polymeric membranes (with PI content from 5-20%) have been fabricated following phase inversion technique. The membranes have been thoroughly characterized by the measurement of porosity, mechanical properties and also by SEM, FTIR and DSC analyses. With the increase in the PI content, the mechanical properties of the membranes, like Young’s modulus, tensile strength and elongation at break, increased. SEM investigations revealed that the surfaces of fabricated blended membranes possessed adequate homogeneity and their cross-sections showed non-porous top and diminutive porous substructure. From DSC analyses it has been observed that different compositions of the blended membranes exhibited single glass transition temperatures, implying proper compatibility of the polymers. The permeance of CO2 and CH4 through the membrane_x000D_
increased with the increase in PI content and it gradually decreased with the increase in the feed pressure in the range of 2-10 bar. Under the present investigation, the membrane with 20% PI content exhibited the maximum selectivity for the separation of CO2 /CH4 gas mixes.
References
Dortmundt D, Doshi K, UOP, Des Plaines, USA, 1 (1999)
Baker RW, Ind. Eng. Chem. Res., 41(6), 1393 (2002)
Wee SL, Tye CT, Bhatia S, Sep. Purif. Technol., 63(3), 500 (2008)
Kim HJ, Hong SI, Korean J. Chem. Eng., 14(5), 382 (1997)
Ismail AF, David LIB, J. Membr. Sci., 193(1), 1 (2001)
Wind JD, Paul DR, Koros WJ, J. Membr. Sci., 228(2), 227 (2004)
Baker RW, Membrane technology and application, McGraw Hill, New York, 135 (2004)
Kesting RE, Fritzsche AK, Polymeric gas separation membranes, John Wiley Sons Inc., New York, 93 (1993)
Sanders ES, J. Membr. Sci., 37, 63 (1988)
Ulbricht M, Polym. J., 47, 2217 (2006)
Scholes CA, Kentish SE, Stevens GW, Recent Patents on Chemical Engineering., 1, 52 (2008)
Kim HJ, Hong SI, Korean J. Chem. Eng., 17(1), 122 (2000)
Wind JD, Staudt-Bickel C, Paul DR, Koros WJ, Ind. Eng. Chem. Res., 41(24), 6139 (2002)
Koros WJ, Wind JD, Wallace D, Bickel CS, United States Patent, No. 0249950 A1 (2009)
Xiao YC, Chung TS, Guan HM, Guiver MD, J. Membr. Sci., 302(1-2), 254 (2007)
Bos A, Punt IGM, Wessling M, Strathmann H, Sep. Purif. Technol., 14(1-3), 27 (1998)
Kapantaidakis GC, Koops GH, Wessling M, Desalination, 145(1-3), 353 (2002)
Hosseini SS, Chung TS, J. Membr. Sci., 328(1-2), 174 (2009)
Ismail AF, Rahim RA, Rahman WAWA, Sep. Purif. Technol., 63(1), 200 (2008)
Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK, J. Appl. Polym. Sci., 75(12), 1554 (2000)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Aitken CL, Koros WJ, Paul DR, Macromolecules., 25, 3651 (1992)
Mulder M, Basic principles of membrane technology, 2nd Ed., Kluwer Academic, Dordrecht, 213 (1996)
Ismail AF, Lorna W, Sep. Purif. Technol., 27(3), 173 (2002)
Fan P, Wang B, Korean J. Chem. Eng., 26(6), 1813 (2009)
Jansen JC, Macchione M, Drioli E, J. Membr. Sci., 255(1-2), 167 (2005)
Chun KY, Jang SH, Kim HS, Kim YW, Han HS, Joe YI, J. Membr. Sci., 169(2), 197 (2000)
Tan X, Wang Z, Liu H, Liu S, J. Membr. Sci., 32, 128 (2008)
Javaid A, Chem. Eng. J., 112(1-3), 219 (2005)
Lee WJ, Kim DS, Kim JH, Korean J. Chem. Eng., 17(2), 143 (2000)
Yeow ML, Liu YT, Li K, J. Appl. Polym. Sci., 92(3), 1782 (2004)
Smolders CA, Reuvers AJ, Boom RM, Wienk IM, J. Membr. Sci., 73, 259 (1992)
Wang DM, Lin FC, Wu TT, Lai JY, J. Membr. Sci., 142(2), 191 (1998)
Mckelvey SA, Koros WJ, J. Membr. Sci., 112(1), 29 (1996)
Barzin J, Sadatnia B, J. Membr. Sci., 325(1), 92 (2008)
Walsh DJ, Roston S, Adv. Poly. Sci., 70, 119 (1985)
Shiomi T, Ishimatsu H, Eguchi T, Imai K, Macromolecules., 23, 4970 (1990)
Prinos J, Panayiotou C, Polymer, 36(6), 1223 (1995)
Haraya K, Obata K, Itoh N, Shndo Y, Hakuta T, Yoshitome H, J. Membr. Sci., 41, 23 (1989)
Koros WJ, Chern RT, Stanett VT, Hoffenberg HB, J. Membr. Sci., 19, 1513 (1981)
Koros WJ, Chan AH, Pau DR, J. Membr. Sci., 2, 165 (1977)
Vieth WR, Howell JM, Hsieh JH, J. Membr. Sci., 1, 177 (1976)
Baker RW, Ind. Eng. Chem. Res., 41(6), 1393 (2002)
Wee SL, Tye CT, Bhatia S, Sep. Purif. Technol., 63(3), 500 (2008)
Kim HJ, Hong SI, Korean J. Chem. Eng., 14(5), 382 (1997)
Ismail AF, David LIB, J. Membr. Sci., 193(1), 1 (2001)
Wind JD, Paul DR, Koros WJ, J. Membr. Sci., 228(2), 227 (2004)
Baker RW, Membrane technology and application, McGraw Hill, New York, 135 (2004)
Kesting RE, Fritzsche AK, Polymeric gas separation membranes, John Wiley Sons Inc., New York, 93 (1993)
Sanders ES, J. Membr. Sci., 37, 63 (1988)
Ulbricht M, Polym. J., 47, 2217 (2006)
Scholes CA, Kentish SE, Stevens GW, Recent Patents on Chemical Engineering., 1, 52 (2008)
Kim HJ, Hong SI, Korean J. Chem. Eng., 17(1), 122 (2000)
Wind JD, Staudt-Bickel C, Paul DR, Koros WJ, Ind. Eng. Chem. Res., 41(24), 6139 (2002)
Koros WJ, Wind JD, Wallace D, Bickel CS, United States Patent, No. 0249950 A1 (2009)
Xiao YC, Chung TS, Guan HM, Guiver MD, J. Membr. Sci., 302(1-2), 254 (2007)
Bos A, Punt IGM, Wessling M, Strathmann H, Sep. Purif. Technol., 14(1-3), 27 (1998)
Kapantaidakis GC, Koops GH, Wessling M, Desalination, 145(1-3), 353 (2002)
Hosseini SS, Chung TS, J. Membr. Sci., 328(1-2), 174 (2009)
Ismail AF, Rahim RA, Rahman WAWA, Sep. Purif. Technol., 63(1), 200 (2008)
Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK, J. Appl. Polym. Sci., 75(12), 1554 (2000)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Aitken CL, Koros WJ, Paul DR, Macromolecules., 25, 3651 (1992)
Mulder M, Basic principles of membrane technology, 2nd Ed., Kluwer Academic, Dordrecht, 213 (1996)
Ismail AF, Lorna W, Sep. Purif. Technol., 27(3), 173 (2002)
Fan P, Wang B, Korean J. Chem. Eng., 26(6), 1813 (2009)
Jansen JC, Macchione M, Drioli E, J. Membr. Sci., 255(1-2), 167 (2005)
Chun KY, Jang SH, Kim HS, Kim YW, Han HS, Joe YI, J. Membr. Sci., 169(2), 197 (2000)
Tan X, Wang Z, Liu H, Liu S, J. Membr. Sci., 32, 128 (2008)
Javaid A, Chem. Eng. J., 112(1-3), 219 (2005)
Lee WJ, Kim DS, Kim JH, Korean J. Chem. Eng., 17(2), 143 (2000)
Yeow ML, Liu YT, Li K, J. Appl. Polym. Sci., 92(3), 1782 (2004)
Smolders CA, Reuvers AJ, Boom RM, Wienk IM, J. Membr. Sci., 73, 259 (1992)
Wang DM, Lin FC, Wu TT, Lai JY, J. Membr. Sci., 142(2), 191 (1998)
Mckelvey SA, Koros WJ, J. Membr. Sci., 112(1), 29 (1996)
Barzin J, Sadatnia B, J. Membr. Sci., 325(1), 92 (2008)
Walsh DJ, Roston S, Adv. Poly. Sci., 70, 119 (1985)
Shiomi T, Ishimatsu H, Eguchi T, Imai K, Macromolecules., 23, 4970 (1990)
Prinos J, Panayiotou C, Polymer, 36(6), 1223 (1995)
Haraya K, Obata K, Itoh N, Shndo Y, Hakuta T, Yoshitome H, J. Membr. Sci., 41, 23 (1989)
Koros WJ, Chern RT, Stanett VT, Hoffenberg HB, J. Membr. Sci., 19, 1513 (1981)
Koros WJ, Chan AH, Pau DR, J. Membr. Sci., 2, 165 (1977)
Vieth WR, Howell JM, Hsieh JH, J. Membr. Sci., 1, 177 (1976)