ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 22, 2011
Accepted September 26, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Simulation study of biobutanol production in a polymer-loaded two-phase partitioning bioreactor (PL-TPPB): Model development

Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Gangwon-do 210-702 Korea
Korean Journal of Chemical Engineering, November 2011, 28(11), 2170-2177(8), 10.1007/s11814-011-0251-x
downloadDownload PDF

Abstract

The conventional two-phase partitioning bioreactor (TPPB) containing an organic solvent as a second phase was found to be hardly efficient for biobutanol production because of the relatively low partitioning coefficient of butanol between the organic solvent and aqueous solution. Polymer bead was alternatively employed as the second phase in the TPPB, and Dowex Optipore L-493, a copolymer of styrene and divinyl benzene, was chosen as the optimum polymer because it shows the highest partitioning coefficients of butanol, acetone, ethanol and butyric acid against the aqueous phase among candidate polymers. The mass transfer coefficients of compounds from the aqueous phase into polymer beads were experimentally determined with respect to agitation speed. The mass transfer coefficient related to the stripping of volatile compounds by nitrogen gas was also determined, and the influence of gas flow rate turned out to be greater_x000D_ than that of the agitation speed, though both influences were remarkable. A mathematical model for the TPPB containing the polymer beads was suggested and as many as 40 parameters were cited from other publications or determined in this study. This mathematical model will be subsequently used for the detailed simulation study.

References

Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424 (2007)
Antoni D, Zverlov VV, Schwarz WH, Appl. Microbiol. Biotechnol., 77(1), 23 (2007)
Jeon DJ, Yeom SH, Korean J. Chem. Eng., 27(5), 1555 (2010)
Sang BI, Kim YH, News Inf. Chem. Eng., 26(6), 704 (2008)
Cha WO, News Inf. Chem. Eng., 25(6), 609 (2007)
Izak P, Ruth W, Fei Z, Dyson PJ, Kragl U, Chem. Eng. J., 139(2), 318 (2008)
Qureshi N, Maddox IS, Friedel A, Biotechnol. Progr., 8, 382 (1992)
Ennis BM, Marshall CT, Maddox IS, Paterson AHJ, Biotechnol. Lett., 8, 725 (1986)
Ezeji TC, Karcher PM, Qureshi N, Blaschek HP, Biopro. Biosyst. Eng., 27, 207 (2005)
Yoon JY, Park CH, Kim WJ, Korean J. Biotechnol. Bioeng., 15(4), 380 (2000)
Ei-Zanati E, Abdel-Hakim E, El-Ardi O, Fahmy M, J. Membr. Sci., 280(1-2), 278 (2006)
Qureshi N, Hughes S, Maddox IS, Cotta MA, Biopro. Biosyst. Eng., 27, 215 (2005)
Barton WE, Daugulis AJ, Appl. Microbiol. Biotechnol., 36, 632 (1992)
Cho MO, Lee SM, Sang BI, Um YS, KSBB J., 24, 446 (2009)
Daugulis AJ, Trends Biotechnol., 19, 459 (2001)
Yeom SH, Daugulis AJ, Process Biochem., 36, 765 (2001)
Yeom SH, Daugulis AJ, Biotechnol. Bioeng., 72(2), 156 (2001)
Yeom SH, Daugulis AJ, Lee SH, Process Biochem., 45, 1582 (2010)
Yeom SH, Daugulis AJ, Nielsen DR, Biotechnol. Prog., 26(6), 1777 (2010)
Littlejohns JV, McAuley KB, Daugulis AJ, J. Hazard. Mater., 175(1-3), 872 (2010)
Miller GL, Anal. Chem., 31, 426 (1959)
Nielsen DR, Prather KJ, Biotechnol. Bioeng., 102(3), 811 (2009)
Yang XP, Tsao GT, Biotechnol. Prog., 10(5), 532 (1994)
Barton WE, Daugulis AJ, Appl. Microbiol. Biotechnol., 36, 632 (1992)
Qureshi N, Blaschek HP, Renew. Eng., 22, 557 (2001)
Mulchandani A, Voleski B, Can. J. Chem. Eng., 64, 625 (1986)
Truong KN, Blackburn JW, Environ. Prog., 3, 143 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로