Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 19, 2010
Accepted April 10, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Visible light-irradiated degradation of alachlor on Fe-TiO2 with assistance of H2O2
Department of Chemical Engineering, Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand 1National Nanotechnology Center (NANOTEC), NSTDA, Pathumthani 12120, Thailand 2School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand 3Department of Chemical Engineering, Faculty of Engineering, NCE for Environmental and Hazardous Waste Management, Thammasat University, Pathumthani 12120, Thailand
gnurak@engr.tu.ac.th
Korean Journal of Chemical Engineering, November 2011, 28(11), 2178-2183(6), 10.1007/s11814-011-0095-4
Download PDF
Abstract
0.1 Fe/Ti mole ratio of Fe-TiO2 catalysts were synthesized via solvothermal method and calcined at various temperatures: 300, 400, and 500 ℃. The calcined catalysts were characterized by XRD, N2-adsorption-desorption, UVDRS, XRF, and Zeta potential and tested for photocatalytic degradation of alachlor under visible light. The calcined catalysts consisted only of anatase phase. The BET specific surface area decreased with the calcination temperatures. The doping Fe ion induced a red shift of absorption capacity from UV to the visible region. The Fe-TiO2 calcined at 400 ℃ showed the highest photocatalytic activity on degradation of alachlor with assistance of 30 mM H2O2 at pH 3 under visible light irradiation. The degradation fitted well with Langmuir-Hinshelwood model that gave adsorption coefficient and the reaction rate constant of 0.683 L mg^(-1) and 0.136 mg/L·min, respectively.
References
Lee WJ, Hoppin JA, Blair A, Lubin JH, Dosemeci M, Sandler DP, Alavanja MCR, Am. J. Epidemiol., 159, 373 (2004)
Benzbaruah AN, Thompson JM, Chishilm BJ, J. Environ. Sci. Health Part B., 44, 518 (2009)
Atheba P, Robert D, Trokourev A, Bamba D, Weber JV, Water Sci. Technol., 60, 2187 (2009)
Kim MS, Ryu CH, Kim BW, Water Res., 39, 525 (2005)
Wong CC, Chu W, Environ. Sci. Technol., 37, 2310 (2003)
Ryu CS, Kim MS, Kim BW, Chemosphere., 53, 765 (2003)
Artkla S, Wantala K, Srinameb BO, Grisdanurak N, Klysubun W, Wittayakun J, Korean J. Chem. Eng., 26(6), 1556 (2009)
Wantala K, Tipayarom D, Laokiat L, Grisdanurak N, React. Kinet. Catal. Lett., 97(2), 249 (2009)
Deng LX, Wang SR, Liu DY, Zhu BL, Huang WP, Wu SH, Zhang SM, Catal. Lett., 129(3-4), 513 (2009)
Wantala K, Loakiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612 (2010)
Wang J, Li J, Zhang LQ, Li CW, Xie YP, Liu B, Xu R, Zhang XD, Catal. Lett., 130(3-4), 551 (2009)
Wong CC, Chu W, Chemosphere., 50, 981 (2003)
Dionysiou DD, Suidan MT, Baudin I, Laine JM, Appl. Catal. B: Environ., 50(4), 259 (2004)
Yu JG, Xiang QJ, Zhou MH, Appl. Catal. B: Environ., 90(3-4), 595 (2009)
Li JX, Xu JH, Dai WL, Li HX, Fan KN, Appl. Catal. B: Environ., 85(3-4), 162 (2009)
Surolia PK, Tayade RJ, Jasra RV, Ind. Eng. Chem. Res., 46(19), 6196 (2007)
Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T, J. Am. Chem. Soc., 127(31), 10982 (2005)
Murphy AB, Sol. Energ. Mater. Sol. C., 91, 1326 (2007)
Chu W, Wong CC, Ind. Eng. Chem. Res., 43(17), 5027 (2004)
Perez MH, Penuela G, Maldonado MI, Malato O, Fernandez-Ibanez P, Oller I, Gernjak W, Malato S, Appl. Catal. B: Environ., 64(3-4), 272 (2006)
Penuela GA, Barcelo D, J. Chromatogr. A., 754, 187 (1996)
Bolton JR, Bircher KG, Tumas W, Tolman CA, Pure Appl. Chem., 73, 627 (2001)
Mahmoodi NM, Arami M, J. Alloy Compd., 506, 155 (2010)
Benzbaruah AN, Thompson JM, Chishilm BJ, J. Environ. Sci. Health Part B., 44, 518 (2009)
Atheba P, Robert D, Trokourev A, Bamba D, Weber JV, Water Sci. Technol., 60, 2187 (2009)
Kim MS, Ryu CH, Kim BW, Water Res., 39, 525 (2005)
Wong CC, Chu W, Environ. Sci. Technol., 37, 2310 (2003)
Ryu CS, Kim MS, Kim BW, Chemosphere., 53, 765 (2003)
Artkla S, Wantala K, Srinameb BO, Grisdanurak N, Klysubun W, Wittayakun J, Korean J. Chem. Eng., 26(6), 1556 (2009)
Wantala K, Tipayarom D, Laokiat L, Grisdanurak N, React. Kinet. Catal. Lett., 97(2), 249 (2009)
Deng LX, Wang SR, Liu DY, Zhu BL, Huang WP, Wu SH, Zhang SM, Catal. Lett., 129(3-4), 513 (2009)
Wantala K, Loakiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612 (2010)
Wang J, Li J, Zhang LQ, Li CW, Xie YP, Liu B, Xu R, Zhang XD, Catal. Lett., 130(3-4), 551 (2009)
Wong CC, Chu W, Chemosphere., 50, 981 (2003)
Dionysiou DD, Suidan MT, Baudin I, Laine JM, Appl. Catal. B: Environ., 50(4), 259 (2004)
Yu JG, Xiang QJ, Zhou MH, Appl. Catal. B: Environ., 90(3-4), 595 (2009)
Li JX, Xu JH, Dai WL, Li HX, Fan KN, Appl. Catal. B: Environ., 85(3-4), 162 (2009)
Surolia PK, Tayade RJ, Jasra RV, Ind. Eng. Chem. Res., 46(19), 6196 (2007)
Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T, J. Am. Chem. Soc., 127(31), 10982 (2005)
Murphy AB, Sol. Energ. Mater. Sol. C., 91, 1326 (2007)
Chu W, Wong CC, Ind. Eng. Chem. Res., 43(17), 5027 (2004)
Perez MH, Penuela G, Maldonado MI, Malato O, Fernandez-Ibanez P, Oller I, Gernjak W, Malato S, Appl. Catal. B: Environ., 64(3-4), 272 (2006)
Penuela GA, Barcelo D, J. Chromatogr. A., 754, 187 (1996)
Bolton JR, Bircher KG, Tumas W, Tolman CA, Pure Appl. Chem., 73, 627 (2001)
Mahmoodi NM, Arami M, J. Alloy Compd., 506, 155 (2010)