Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 31, 2011
Accepted May 5, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications
Thuy-Duong Nguyen-Phan
Viet Hung Pham
Hyunran Yun
Eui Jung Kim
Seung Hyun Hur
Jin Suk Chung
Eun Woo Shin†
School of Chemical Engineering and Bioengineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 680-749, Korea
ewshin@mail.ulsan.ac.kr
Korean Journal of Chemical Engineering, December 2011, 28(12), 2236-2241(6), 10.1007/s11814-011-0123-4
Download PDF
Abstract
Thermally-reduced graphene oxide/TiO2 composites (TRGO/Ti) were prepared by the thermal reduction of graphene oxide/TiO2 composite that was obtained from a simple, environmentally friendly, one-step colloidal blending method. The changes in structural and textural properties as well as their corresponding photocatalytic activities were investigated as a function of calcination temperature. The presence of stacked TRGO sheets significantly retarded both the aggregation and the crystalline phase transformation of TiO2 as increasing the temperature from 200 to 600 ℃. TRGO/Ti composites exhibited higher photocatalytic activity for the degradation of methylene blue in comparison with pure TiO2 due to the increase in specific surface area and the formation of π-π conjugations between dye compounds and aromatic regions of TRGO. However, increasing the calcination temperature resulted in the lower photoactivity and slower kinetics, which can be ascribed to the decrease in surface area, the reduction of oxygen vacancies, and the loss of_x000D_
functional groups at the edges or on the basal planes of the TRGO sheets.
References
Brown MA, De Vito SC, Crit. Rev. Environ. Sci. Technol., 23, 249 (1993)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL, Carbon., 45, 717 (2007)
Li YJ, Sun SG, Ma MY, Ouyang YZ, Yan WB, Chem. Eng. J., 142(2), 147 (2008)
Shi J, Zheng J, Wu P, Ji X, Catal. Commun., 9, 1846 (2008)
Lam SM, Sin JC, Mohamed AR, Korean J. Chem. Eng., 27(4), 1109 (2010)
Akhavan O, Ghaderi E, J. Phys. Chem. C., 113, 20214 (2009)
Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano., 4, 380 (2010)
Zhang XY, Li HP, Cui XL, Lin Y, J. Mater. Chem., 20, 2801 (2010)
Wang YJ, Shi R, Lin J, Zhu YF, Appl. Catal. B: Environ., 100(1-2), 179 (2010)
Zhou K, Zhu Y, Yang X, Jiang X, Li C, New J. Chem., 35, 353 (2011)
Katsnelson MI, Mater. Today., 10, 20 (2007)
Geim AK, Novoselov KS, Nat. Mater., 6, 183 (2007)
Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS, Nano Lett., 8, 1704 (2008)
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature., 457, 706 (2009)
Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL, J. Phys. Chem. C., 113, 19812 (2009)
Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J, ACS Nano., 3, 907 (2009)
Wang P, Zhai Y, Wang D, Dong S, Nanoscale., 3, 1640 (2011)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, Kim EJ, Carbon., 48, 1945 (2010)
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
Yu J, Yu JC, Ho W, Jiang Z, New J. Chem., 26, 607 (2002)
Rath C, Mohanty P, Pandey AC, Mishra NC, J. Phys. D: Appl. Phys., 42, 205101 (2009)
Nakaruk A, Lin CY, Perera DS, Sorrell CC, J. Sol-Gel Sci. Technol., 55, 328 (2010)
Matos J, Laine J, Herrmann JM, Appl. Catal. B: Environ., 18(3-4), 281 (1998)
Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM, Appl. Catal. B: Environ., 31(2), 145 (2001)
Kim TW, Lee MJ, Shim WG, Lee JW, Kim TY, Lee DH, Moon H, J. Mater. Sci., 43(19), 6486 (2008)
Yao Y, Li G, Ciston S, Lueptow RM, Gray KA, Environ. Sci. Technol., 42, 4952 (2008)
Chou PW, Wang YS, Lin CC, Chen YJ, Cheng CL, Wong, MS, Surf. Coat. Technol., 204, 834 (2009)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL, Carbon., 45, 717 (2007)
Li YJ, Sun SG, Ma MY, Ouyang YZ, Yan WB, Chem. Eng. J., 142(2), 147 (2008)
Shi J, Zheng J, Wu P, Ji X, Catal. Commun., 9, 1846 (2008)
Lam SM, Sin JC, Mohamed AR, Korean J. Chem. Eng., 27(4), 1109 (2010)
Akhavan O, Ghaderi E, J. Phys. Chem. C., 113, 20214 (2009)
Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano., 4, 380 (2010)
Zhang XY, Li HP, Cui XL, Lin Y, J. Mater. Chem., 20, 2801 (2010)
Wang YJ, Shi R, Lin J, Zhu YF, Appl. Catal. B: Environ., 100(1-2), 179 (2010)
Zhou K, Zhu Y, Yang X, Jiang X, Li C, New J. Chem., 35, 353 (2011)
Katsnelson MI, Mater. Today., 10, 20 (2007)
Geim AK, Novoselov KS, Nat. Mater., 6, 183 (2007)
Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS, Nano Lett., 8, 1704 (2008)
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature., 457, 706 (2009)
Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL, J. Phys. Chem. C., 113, 19812 (2009)
Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J, ACS Nano., 3, 907 (2009)
Wang P, Zhai Y, Wang D, Dong S, Nanoscale., 3, 1640 (2011)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, Kim EJ, Carbon., 48, 1945 (2010)
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
Yu J, Yu JC, Ho W, Jiang Z, New J. Chem., 26, 607 (2002)
Rath C, Mohanty P, Pandey AC, Mishra NC, J. Phys. D: Appl. Phys., 42, 205101 (2009)
Nakaruk A, Lin CY, Perera DS, Sorrell CC, J. Sol-Gel Sci. Technol., 55, 328 (2010)
Matos J, Laine J, Herrmann JM, Appl. Catal. B: Environ., 18(3-4), 281 (1998)
Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM, Appl. Catal. B: Environ., 31(2), 145 (2001)
Kim TW, Lee MJ, Shim WG, Lee JW, Kim TY, Lee DH, Moon H, J. Mater. Sci., 43(19), 6486 (2008)
Yao Y, Li G, Ciston S, Lueptow RM, Gray KA, Environ. Sci. Technol., 42, 4952 (2008)
Chou PW, Wang YS, Lin CC, Chen YJ, Cheng CL, Wong, MS, Surf. Coat. Technol., 204, 834 (2009)