ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 7, 2010
Accepted April 24, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Immobilization strategy of accessible transmission for trypsin to catalyze synthesis of dipeptide in mesoporous support

1National Engineering, Research Center for Biotechnology, Nanjing 210009, P. R. China 2College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China
zsbshen@gmail.com
Korean Journal of Chemical Engineering, December 2011, 28(12), 2300-2305(6), 10.1007/s11814-011-0113-6
downloadDownload PDF

Abstract

Immobilized trypsin in mesoporous silica foams was used to catalyze dipeptide synthesis in hydrophilic organic solvent instead of soluble form. The area surface of nano support was measured. The catalytic activity, coupled yield and kinetic characterization of immobilized trypsin were examined. Bz-Arg-OEt was chosen as the acyl donor with Lys-OH as the nucleophile. The trypsin-catalyzed synthesis condition was optimized, such as catalytic temperature, pH, reaction time, physical properties and content of organic solvents, together with the added enzyme amount. The immobilized trypsin showed 112.8% of residual activity with 91.9% of coupled yield, and the kinetic parameters exhibited accessibility for transmission. The product yield of 5.8% was reached at the optimum conditions for enzymatic synthesis of dipeptide: 800 mg of wet immobilized trypsin (200 mg/g support) was used in Tris-HCl buffer (0.1 mol/L, pH 8.0) containing 80% (v/v) ethanol solvents for 6 h of reaction time at 35 ℃ . This attempt of mmobilized strategy for trypsin in nanopores renders the possibility of wide application of inorganic nano-sized support in catalytic synthesis process, which can avoid usage of large amounts of organic solvents in washing steps by chemical methods and reduce the tedious purification process of its soluble form.

References

Wang J, Lu WL, Liang GW, Wu KC, Zhang CG, Zhang X, Wang JC, Zhang H, Wang XQ, Zhang Q, Peptides., 27, 826 (2006)
Wang WG, Li PH, Shen SB, Ying HJ, Ouyang PK, Chinese J. Org. Chem., 26, 826 (2006)
Gupta MN, Roy I, Eur. J. Biochem., 271, 2575 (2004)
Tai DF, Curr. Org. Chem., 7, 515 (2003)
Sekizaki H, Iton K, Shibuya A, Toyota E, Kojoma M, Tanizawa K, Chem. Pharm. Bull., 56, 688 (2008)
Lang A, Hatscher C, Wiegert C, Kuhl P, Amino Acids., 36, 333 (2009)
Guzman F, Barberis S, Illanes A, Electron. J. Biotechnol., 10, 279 (2007)
Liu T, Wang S, Chen G, Talanta., 77, 1767 (2009)
Jarzebski AB, Szymanska K, Bryjak J, Mrowiec-Bialon J, Catal. Today, 124(1-2), 2 (2007)
Peter JH, Rein VU, Sabine LF, Curr. Opin. in Biotechnol., 16, 385 (2005)
Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 121(1), 254 (1999)
Wang AM, Wang H, Zhu SM, Zhou C, Du ZQ, Shen SB, Bioproc. Biosyst. Eng., 31, 509 (2008)
Bradford MM, Anal. Biochem., 72, 248 (1987)
Kunitz M, J. Gen. Physiol., 30, 291 (1947)
Lyubinskii GV, Kalinichenko EA, Tertykh VA, Theor. Exp.Chem., 28, 216 (1993)
Agostinelli E, Belli F, Tempera G, Mura A, Floris G, Toniolo L, Vavasori A, Fabris S, Momo F, Stevanato R, J. Biotechnol., 127, 670 (2007)
Zhou C, Wang A, Du Z, Zhu S, Shen S, Korean J. Chem. Eng., 26(4), 1065 (2009)
Zhang ZD, He ZM, He MX, J. Mol. Catal. B-Enzym., 14, 85 (2001)
Li SJ, Zhao Y, Huang YB, Gao G, Zhang DH, Xu L, Li G, Zhang XZ, Prep. Biochem. Biotechnol., 23, 158 (2008)
Iyer PV, Ananthanarayan L, Process Biochem., 43, 1029 (2008)
Mares-Guia M, Figueiredo AFS, Biochemistry., 11, 2091 (1972)
Halling PJ, Enzyme Catalysis in Organic Synthesis, vol I: Enzymic conversions in organic and other low-water media (Drauz K, Waldmann H, Ed.), Wiley-VCH, Weinheim, 259 (2002)
Sekizaki H, Itoh K, Toyota E, Tanizawa K, J. Pept. Sci., 8, 521 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로