Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 24, 2010
Accepted June 19, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Study of the structural characteristics of a divided wall column using the sloppy distillation arrangement
School of Chem. Eng. & Tech, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Gyeongbuk 712-749 Korea 1Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea 2Department of Chemical Engineering, Dong-A University, 840 Hadan-dong, Saha-gu, Busan 604-714, Korea
Korean Journal of Chemical Engineering, February 2011, 28(2), 348-356(9), 10.1007/s11814-010-0364-7
Download PDF
Abstract
An efficient design method is proposed for determining the optimal design structure of a dividing wall column (DWC). The internal section of the DWC is divided into four separate sections and matched to the sloppy arrangement with three conventional simple columns. The light and heavy key component mole-fractions are used as the design variables in each column. The structure that gives superior energy efficiency in the shortcut sloppy case also brings superior energy efficiency in the DWC, while the optimal internal flow distribution of the DWC is different from that obtained from the sloppy configuration. Based upon an extensive simulation study, a two-step approach is proposed for the DWC design: the optimal DWC structure is first determined by applying the shortcut method to the sloppy configuration; the optimal internal flow distribution is then found from the corresponding DWC configuration. The simulation study shows that the DWC designed by the proposed method gives a near-optimal structure.
Keywords
References
YOO KP, LEE KS, LEE WH, PARK HS, Korean J. Chem. Eng., 5(2), 123 (1988)
ZAKI ML, YOON ES, Korean J. Chem. Eng., 6(3), 185 (1989)
Amminudin KA, Smith R, Trans. Inst. Chem. Eng., Part A, 79, 716 (2001)
Kim YH, Korean J. Chem. Eng., 17(5), 570 (2000)
Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 605 (2003)
Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994 (2004)
Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383 (2002)
Kim YH, Chem. Eng. J., 85(2-3), 289 (2002)
Phipps MA, Hoadley AFA, Korean J. Chem. Eng., 20(4), 642 (2003)
Nikolaides IP, Malone MF, Ind. Eng. Chem. Res., 27, 811 (1988)
Querzoli AL, Hoadley AFA, Dyson TES, Korean J. Chem. Eng., 20(4), 635 (2003)
Agrawal R, Trans. Inst. Chem. Eng., PartA, 78, 454 (2000)
Kim YH, Choi DW, Hwang KS, Korean J. Chem. Eng., 20(4), 755 (2003)
Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689 (2006)
Lee MY, Kim YH, Korean Chem. Eng. Res., 46(5), 1017 (2008)
Lee MY, Jeong SY, Kim YH, Korean J. Chem. Eng., 25(6), 1245 (2008)
Lee MY, Choi DW, Kim YH, Korean J. Chem. Eng., 26(3), 631 (2009)
Hwang KS, Sung IG, Kim YH, Korean Chem. Eng. Res., 47(3), 327 (2009)
Triantafyllou C, Smith R, Trans. Inst. Chem. Eng., Part A, 70, 118 (1992)
Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng., 85, 289 (2002)
Agrawal R, Fidkowski ZT, AIChE J., 45(3), 485 (1999)
Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47 (2009)
Fenske MR, Ind. Eng. Chem., 32 (1932)
Gilliland ER, Ind. Eng. Chem., 32, 1220 (1940)
Fenske MR, Ind. Eng. Chem., 24, 482 (1932)
Underwood AJ, Chem. Eng. Progress., 44, 603 (1948)
Tedder DW, Rudd DF, AIChE J., 24, 303 (1978)
Jimenez A, Ramirez N, Castro A, Hernandez S, Trans. Inst.Chem. Eng., 81(A5), 518 (2003)
Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34(6), 2094 (1995)
Halvorsen IJ, Skogestad S, J. Process Control, 9(5), 407 (1999)
Abdul Mutalib MI, Zeglam AO, Smith R, Trans. Inst. Chem.Eng., 76(A3), 308 (1998)
ZAKI ML, YOON ES, Korean J. Chem. Eng., 6(3), 185 (1989)
Amminudin KA, Smith R, Trans. Inst. Chem. Eng., Part A, 79, 716 (2001)
Kim YH, Korean J. Chem. Eng., 17(5), 570 (2000)
Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 605 (2003)
Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994 (2004)
Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383 (2002)
Kim YH, Chem. Eng. J., 85(2-3), 289 (2002)
Phipps MA, Hoadley AFA, Korean J. Chem. Eng., 20(4), 642 (2003)
Nikolaides IP, Malone MF, Ind. Eng. Chem. Res., 27, 811 (1988)
Querzoli AL, Hoadley AFA, Dyson TES, Korean J. Chem. Eng., 20(4), 635 (2003)
Agrawal R, Trans. Inst. Chem. Eng., PartA, 78, 454 (2000)
Kim YH, Choi DW, Hwang KS, Korean J. Chem. Eng., 20(4), 755 (2003)
Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689 (2006)
Lee MY, Kim YH, Korean Chem. Eng. Res., 46(5), 1017 (2008)
Lee MY, Jeong SY, Kim YH, Korean J. Chem. Eng., 25(6), 1245 (2008)
Lee MY, Choi DW, Kim YH, Korean J. Chem. Eng., 26(3), 631 (2009)
Hwang KS, Sung IG, Kim YH, Korean Chem. Eng. Res., 47(3), 327 (2009)
Triantafyllou C, Smith R, Trans. Inst. Chem. Eng., Part A, 70, 118 (1992)
Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng., 85, 289 (2002)
Agrawal R, Fidkowski ZT, AIChE J., 45(3), 485 (1999)
Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47 (2009)
Fenske MR, Ind. Eng. Chem., 32 (1932)
Gilliland ER, Ind. Eng. Chem., 32, 1220 (1940)
Fenske MR, Ind. Eng. Chem., 24, 482 (1932)
Underwood AJ, Chem. Eng. Progress., 44, 603 (1948)
Tedder DW, Rudd DF, AIChE J., 24, 303 (1978)
Jimenez A, Ramirez N, Castro A, Hernandez S, Trans. Inst.Chem. Eng., 81(A5), 518 (2003)
Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34(6), 2094 (1995)
Halvorsen IJ, Skogestad S, J. Process Control, 9(5), 407 (1999)
Abdul Mutalib MI, Zeglam AO, Smith R, Trans. Inst. Chem.Eng., 76(A3), 308 (1998)