Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 10, 2010
Accepted July 12, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Synthesis of copper-poly tetrafluoro-ethylene composites by supercritical impregnation process
Department of Mechanical System Engineering, Pukyong National University, 100 Yongdang-dong, Nam-gu, Busan 608-739, Korea 1Department of Chemical Engineering, Pukyong National University, 100 Yongdang-dong, Nam-gu, Busan 608-739, Korea
csju@pknu.ac.kr
Korean Journal of Chemical Engineering, February 2011, 28(2), 440-444(5), 10.1007/s11814-010-0374-5
Download PDF
Abstract
This study attempted to develop a copper-PTFE composite consisting of copper nano-particles homogeneously distributed into PTFE using scCO2. The overall synthesis process consisted of impregnation of copper precursor and thermolytic reduction. The impregnation process was performed over a range of temperature from 40 to 160 ℃ and pressure from 120 to 200 bar. The reduction process was performed at 230 ℃ and 250 bar for 2 hours consecutively after impregnation. The changes in appearance, mass, and morphology of the PTFE composite were examined by precision balance, SEM, TEM, and EDS. The impregnation ratio increased with temperature up to 120 ℃, but decreased above 120 ℃. The impregnation ratio increased with the pressure. These results could be explained by dehydration reaction of Cu(hfa)2H2O and thermodynamical affinity difference of copper precursors for PTFE or scCO2. Copper nano-particles impregnated into the PTFE were identified from SEM, TEM and EDS analysis.
References
Muth O, Hirth T, Vogel H, J. Supercrit. Fluids, 17(1), 65 (2000)
Berens AR, Huvard GS, Korsmeyer RW, Kunig FW, J. Appl. Polym. Sci., 46, 231 (1992)
Diankov S, Barth D, Vega-Gonzalez A, Pentchev I, Subra-Paternault P, J. Supercrit. Fluids, 41(1), 164 (2007)
Kojima M, Kohjiya S, Ikeda Y, Polymer., 45, 2016 (2005)
Crank J, The Mathematics of Diffusion, Clarendon Press, Oxford (1975)
Neogi P, in Diffusion in Polymers, P. Neogi, Ed., Marcel Dekker, Inc., New York, 173 (1996)
Elvira C, Fanovich A, Fernandez M, Fraile J, Raman JS, Domingo C, J. Controlled Release., 99, 231 (2004)
Uzer S, Akman U, Hortacsu O, J. Supercrit. Fluids, 38(1), 119 (2006)
Yoda S, Takebayashi Y, Sugeta T, Otake K, J. Non-Cryst. Solids., 350, 320 (2004)
Bagratashvili VN, Bogomolova LD, Gerasimova VI, Jachkin VA, Krasil’nikova NA, Rybaltovskii AO, Tsypina SI, J. Non-Cryst. Solids., 345, 256 (2004)
Said-Galiyev E, Nikitin L, Vinokur R, Gallyamov M, Kurykin M, Petrova O, Lokshin B, Volkov I, Khokhlov A, Schaumburg K, Ind. Eng. Chem. Res., 39(12), 4891 (2000)
Watkins JJ, McCarthy TJ, Chem. Mater., 7, 1991 (1995)
von Schnitzler J, Eggers R, J. Supercrit. Fluids., 16, 81 (1991)
Popov VK, Bagratashvili VN, Krasnov AP, Said-Galiyev EE, Niktin LN, Afonicheva OV, Aliev AD, Tribology Lett., 5, 297 (1998)
Garriga R, Pessey V, Weill F, Chevalier B, Etourneau J, Cansell F, J. Supercrit. Fluids, 20(1), 55 (2001)
Ngo TT, Liotta CL, Eckert CA, Kazarian SG, J. Supercrit. Fluids, 27(2), 215 (2003)
Gregorowicz J, Fluid Phase Equilib., 238(2), 142 (2005)
Lagalante AF, Hansen BN, Bruno TJ, Sievers RE, Inorg. Chem., 34(23), 5781 (1995)
Wong B, Yoda S, Howdle SM, J. Supercrit. Fluids, 42(2), 282 (2007)
Berens AR, Huvard GS, Korsmeyer RW, Kunig FW, J. Appl. Polym. Sci., 46, 231 (1992)
Diankov S, Barth D, Vega-Gonzalez A, Pentchev I, Subra-Paternault P, J. Supercrit. Fluids, 41(1), 164 (2007)
Kojima M, Kohjiya S, Ikeda Y, Polymer., 45, 2016 (2005)
Crank J, The Mathematics of Diffusion, Clarendon Press, Oxford (1975)
Neogi P, in Diffusion in Polymers, P. Neogi, Ed., Marcel Dekker, Inc., New York, 173 (1996)
Elvira C, Fanovich A, Fernandez M, Fraile J, Raman JS, Domingo C, J. Controlled Release., 99, 231 (2004)
Uzer S, Akman U, Hortacsu O, J. Supercrit. Fluids, 38(1), 119 (2006)
Yoda S, Takebayashi Y, Sugeta T, Otake K, J. Non-Cryst. Solids., 350, 320 (2004)
Bagratashvili VN, Bogomolova LD, Gerasimova VI, Jachkin VA, Krasil’nikova NA, Rybaltovskii AO, Tsypina SI, J. Non-Cryst. Solids., 345, 256 (2004)
Said-Galiyev E, Nikitin L, Vinokur R, Gallyamov M, Kurykin M, Petrova O, Lokshin B, Volkov I, Khokhlov A, Schaumburg K, Ind. Eng. Chem. Res., 39(12), 4891 (2000)
Watkins JJ, McCarthy TJ, Chem. Mater., 7, 1991 (1995)
von Schnitzler J, Eggers R, J. Supercrit. Fluids., 16, 81 (1991)
Popov VK, Bagratashvili VN, Krasnov AP, Said-Galiyev EE, Niktin LN, Afonicheva OV, Aliev AD, Tribology Lett., 5, 297 (1998)
Garriga R, Pessey V, Weill F, Chevalier B, Etourneau J, Cansell F, J. Supercrit. Fluids, 20(1), 55 (2001)
Ngo TT, Liotta CL, Eckert CA, Kazarian SG, J. Supercrit. Fluids, 27(2), 215 (2003)
Gregorowicz J, Fluid Phase Equilib., 238(2), 142 (2005)
Lagalante AF, Hansen BN, Bruno TJ, Sievers RE, Inorg. Chem., 34(23), 5781 (1995)
Wong B, Yoda S, Howdle SM, J. Supercrit. Fluids, 42(2), 282 (2007)