Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 13, 2009
Accepted June 17, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
The effect of pressure on removal of carbon monoxide in biofilter
Faculty of Chemical Engineering, Babol University of Technology, P. O. Box 484, Shariati St., Babol 4714871167, Iran
m.hosseini@nit.ac.ir
Korean Journal of Chemical Engineering, February 2011, 28(2), 507-510(4), 10.1007/s11814-010-0362-9
Download PDF
Abstract
Solubility of carbon monoxide in water is very important for its biological oxidation or removal process of gaseous pollutants. Present research shows the effect of pressure on solubility of carbon monoxide in liquid phase and its removal process by a biofilter. The results are considered as laboratory research on carbon monoxide elimination. In this method a pressurized trickle-bed biofilter was used to increase pressure in the reactor. The biofilter was filled with Leca-stones and inoculated with microorganisms. When the system’s pressure is increased, the solubility of carbon monoxide will be increased, respectively, and it causes a better reaction of the microorganisms for removing of gaseous pollutants. The efficiency was improved significantly by increasing the pressure in the reactor.
References
Hosseini M, Moser A, Chem. Biochem. Eng. Quarterly., 14(1), 35 (2000)
Jin Y, Guo L, Veiga MC, Kennes C, Chemospher., 74, 332 (2009)
Prado OL, Veiga MC, Kennes C, Chemospher., 70, 1357 (2008)
Zhu L, Abumaizar RJ, Kocher WM, Environ. Prog., 17, 168 (1998)
Sene L, Converti A, Felipe MGA, Zilli M, Bioresour. Technol., 83(2), 153 (2002)
Cohen Y, Bioresour. Technol., 77(3), 257 (2001)
Liu YH, Quan X, Sun YM, Chen JW, Xue DM, Chung JS, J. Hazard. Mater., 95(1-2), 199 (2002)
Juteau P, Larocque R, Rho D, LeDuy A, Appl. Microbiol. Biotechnol., 52(6), 863 (1999)
Serra MCC, Pessoa FLP, Palavra AMF, J. Chem. Thermodyn., 38(12), 1629 (2006)
Schafer D, Vogt M, Kamps APS, Maurer G, Fluid Phase Equilib., 261(1-2), 306 (2007)
Valtz A, Coquelet C, Richon D, J. Chem. Thermodyn., 39(3), 426 (2007)
Kumelan J, Kamps IPS, Tuma D, Maurer G, J. Chem. Thermodyn., 38(11), 1396 (2006)
Dalmolin I, Skovroinski E, Biasi A, Corazza ML, Dariva C, Vladimir Oliveira J, Fluid Phase Equilibria., 245, 35 (2006)
Schnelle KB, Jr., Brown CA, Air Pollution Control Technology Handbook. (2001)
Jin Y, Guo L, Veiga MC, Kennes C, Chemospher., 74, 332 (2009)
Prado OL, Veiga MC, Kennes C, Chemospher., 70, 1357 (2008)
Zhu L, Abumaizar RJ, Kocher WM, Environ. Prog., 17, 168 (1998)
Sene L, Converti A, Felipe MGA, Zilli M, Bioresour. Technol., 83(2), 153 (2002)
Cohen Y, Bioresour. Technol., 77(3), 257 (2001)
Liu YH, Quan X, Sun YM, Chen JW, Xue DM, Chung JS, J. Hazard. Mater., 95(1-2), 199 (2002)
Juteau P, Larocque R, Rho D, LeDuy A, Appl. Microbiol. Biotechnol., 52(6), 863 (1999)
Serra MCC, Pessoa FLP, Palavra AMF, J. Chem. Thermodyn., 38(12), 1629 (2006)
Schafer D, Vogt M, Kamps APS, Maurer G, Fluid Phase Equilib., 261(1-2), 306 (2007)
Valtz A, Coquelet C, Richon D, J. Chem. Thermodyn., 39(3), 426 (2007)
Kumelan J, Kamps IPS, Tuma D, Maurer G, J. Chem. Thermodyn., 38(11), 1396 (2006)
Dalmolin I, Skovroinski E, Biasi A, Corazza ML, Dariva C, Vladimir Oliveira J, Fluid Phase Equilibria., 245, 35 (2006)
Schnelle KB, Jr., Brown CA, Air Pollution Control Technology Handbook. (2001)