ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 29, 2009
Accepted June 10, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules

Chemical Engineering Department, Catalyst Research Center, Razi University, Kermanshah 67149-67346, Iran 1Pasteur Institute of Iran (IPI), Tehran 13164, Iran 2Chemical Engiveering Department, Biotechnol. Research Lab, Razi University, Kermanshah 67149-67346, Iran
sharif@razi.ac.ir
Korean Journal of Chemical Engineering, February 2011, 28(2), 531-538(8), 10.1007/s11814-010-0355-8
downloadDownload PDF

Abstract

Response surface methodology (RSM) using D-optimal design was applied to optimization of photocatalytic degradation of phenol by new composite nano-catalyst (TiO2/Perlite). Effects of seven factors (initial pH, initial phenol concentration, reaction temperature, UV irradiation time, UV light intensity, catalyst calcination temperature, and dosage of TiO2/perlite) on phenol conversion efficiency were studied and optimized by using the statistical software MODDE 8.02. On statistical analysis of the results from the experimental studies, the optimum process conditions were_x000D_ as follows: initial pH, 10.7; initial phenol concentration, 0.5 mM; reaction temperature, 27 ℃; UV irradiation time, 6.5 h; UV light intensity, 250W; catalyst calcination temperature, 600 ℃; and TiO2/perlite dosage, 6 g/L. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 91.8%.

References

Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79 (2005)
Peiro AM, Ayllon JA, Peral J, Domenech X, Appl. Catal. B: Environ., 30(3-4), 359 (2001)
Wu C, Liu X, Wei D, Fan J, Wang L, Water Res., 35, 3927 (2001)
Ding Z, Hu XJ, Lu GQ, Yue PL, Greenfield PF, Langmuir, 16(15), 6216 (2000)
Eggins B, Byrne JA, Dunlop PM, Davidson A, Top. Issue Glass., 3, 57 (1999)
Vohra MS, Tanaka K, Environ. Sci. Technol., 35, 411 (2001)
Vigil E, Zumeta I, Espinosa R, Nunez C, Ayllon JA, Saadoun L, Domenech X and Rodriguez-Clemente R, Surf. Sci. Its Appl., Proc. Lat. Am. Congr., 9th, Eds. Osvaldo De Melo, and Isaac Hernandez- Calderon, 146-155, Singapore, Singapore: World Scientific Publishing Co. Pte. Ltd. (2000)
Barakat MA, Tseng JM, Huang CP, Appl. Catal. B: Environ., 59(1-2), 99 (2005)
Koike H, Oki Y, Takeuchi Y, Mater. Res. Soc. Symp. Proc., 549, 141 (1999)
Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N, Appl. Catal. B: Environ., 74(1-2), 53 (2007)
Martendal E, Budziak D, Carasek E, J. Chromatogr. A., 1148, 131 (2007)
Mohan SV, Sirisha K, Rao RS, Sarma PN, Ecotoxicol. Environ. Saf., 68, 252 (2007)
Myers RH, Montgomery DC, Response surface methodology: Process and product optimization using designed experiments., John Wiley & Sons, New York (2002)
Chen DW, Ray AK, Appl. Catal. B: Environ., 23(2-3), 143 (1999)
Walter MV, Ruger M, Ragob C, Steffens GCM, Hollander DA, Paar O, Maier HR, Jahnen-Dechent W, Bosserhoff AK, Erli HJ, Biomaterials., 26, 2813 (2005)
Erdem TK, Meral C, Tokyay M, Erdogan TY, Cem. Concr.Compos., 29, 13 (2007)
Daneshvar N, Behnajady MA, Asghar YZ, J. Hazard. Mater., 139(2), 275 (2007)
Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V, Sol. Energy Mater. Sol. Cells., 77, 65 (2003)
Lizama C, Freer J, Baeza J, Mansilla WD, Catal. Today, 76(2-4), 235 (2002)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
Sobana N, Swaminathan M, Sep. Purif. Technol., 56(1), 101 (2007)
Chatterjee S, Sarkar S, Bhattacharyya SN, J. Photochem. Photobiol. A., 77, 183 (1993)
Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862 (2003)
Ohno T, Tokieda K, Higashida S, Matsumura M, Appl. Catal. A: Gen., 244(2), 383 (2003)
Tanaka Y, Suganuma M, J. Sol-Gel Sci. Technol., 22, 83 (2001)
Kim DJ, Hahn SH, Oh SH, Kim EJ, Mater. Lett., 57, 355 (2002)
Mills A, Morris S, J. Photochem. Photobiol. A., 71, 285 (1993)
Machado NRCF, Santana VS, Catal. Today., 107, 595 (2005)
Wang CM, Heller A, Gerscher H, J. Am. Chem. Soc., 114, 5230 (1992)
Alberici RM, Jardim WF, Water Res., 28, 1845 (1994)
Sclafani A, Palmisano L, Davi E, New. J. Chem., 14, 265 (1990)
Matthews RW, J. Chem. Soc. Faraday Trans., 80(1), 457 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로