ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 8, 2010
Accepted December 30, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Microfluidic extraction using two phase laminar flow for chemical and biological applications

Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea 1Biochemical team, GSCaltex R&D Center, Daejeon 305-380, Korea 2Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Korea 3Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea
whhong@kaist.ac.kr
Korean Journal of Chemical Engineering, March 2011, 28(3), 633-642(10), 10.1007/s11814-010-0533-8
downloadDownload PDF

Abstract

We review the state of the art in microfluidic separation technique based two-phase laminar flow with an application focus on chemical and biological sample. As we describe herein, two-phase laminar flow in the microfluidic extraction has several biological and engineering advantages over other methods including high reproducibility, biocompatibility, and selectivity. We review advances in applications of two-phase laminar flow and examine key parameters such as flow rate, phase composition, and surface charge property, how these can affect extract performance_x000D_ with the technology including microfluidic separation system. A special technology focus is given to emerging novel integrative microfluidic extraction, which aims to merge aqueous phase laminar flow and electric field technologies into simple packages. We conclude with a brief discussion of some of the emerging challenges in the field and some of the approaches that are likely to enhance their application.

References

Albertsson PA, Nature., 177, 771 (1956)
Walter H, Krob EJ, J. Chromatogr., 479, 307 (1989)
Walter H, Krob EJ, Brooks DE, Biochemistry., 15, 2959 (1976)
Pinilla M, Delafuente J, Garciaperez AI, Jimeno P, Sancho P, Luque J, J. Chromatogr. A., 668, 165 (1994)
Benavides J, Aguilar O, Lapizco-Encinas BH, Rito-Palomares M, Chem. Eng. Technol., 31(6), 838 (2008)
Akama Y, Ito M, Tanaka S, Talanta., 53, 645 (2000)
Akama Y, Sali A, Talanta., 57, 681 (2002)
Yoshikuni N, Baba T, Tsunoda N, Oguma K, Talanta,, 66, 40 (2005)
Cunha MT, Costa MJL, Calado CRC, Fonseca LP, Aires-Barros MR, Cabral JMS, J. Biotechnol., 100, 55 (2003)
Everberg H, Sivars U, Emanuelsson C, Persson C, Englund AK , Haneskog L, Lipniunas P, Jornten-Karlsson M, Tjerneld F, J.Chromatogr. A., 1029, 113 (2004)
Johansson HO, Ishii M, Minaguti M, Feitosa E, Penna TCV, Pessoa A, Sep. Purif. Technol., 62(1), 166 (2008)
Rosa PAJ, Azevedo AM, Ferreira IF, Sommerfeld S, Backer W, Aires-Barros MR, J. Chromatogr. A., 1216, 8741 (2009)
Meagher RJ, Light YK, Singh AK, Lab on a Chip., 8, 527 (2008)
Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S, Biotechnol. Bioeng., 75(5), 570 (2001)
Bradley AJ, Scott MD, J. Chromatography B-Analytical Technologies in the Biomedical and Life Sciences., 807, 163 (2004)
Frerix A, Muller M, Kula MR, Hubbuch J, Biotechnol. Appl. Biochem., 42, 57 (2005)
Kepka C, Rhodin J, Lemmens R, Tjerneld F, Gustavsson PE, J. Chromatogr. A., 1024, 95 (2004)
Ribeiro SC, Monteiro GA, Cabral JMS, Prazeres DMF, Biotechnol. Bioeng., 78(4), 376 (2002)
Trindade IP, Diogo MM, Prazeres DMF, Marcos JC, J.Chromatogr. A., 1082, 176 (2005)
Frerix A, Schonewald M, Geilenkirchen P, Muller M, Kula MR, Hubbuch J, Langmuir, 22(9), 4282 (2006)
Frerix A, Geilenkirchen P, Muller M, Kula MR, Hubbuch J, Biotechnol. Bioeng., 96(1), 57 (2007)
Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF, Sep. Purif. Technol., 65(1), 22 (2009)
Mashayekhi F, Meyer AS, Shiigi SA, Nguyen V, Kamei DT, Biotechnol. Bioeng., 102(6), 1613 (2009)
Luechau F, Ling TC, Lyddiatt A, Process Biochem., 45, 1432 (2010)
Kepka C, Lemmens R, Vasi J, Nyhammar T, Gustavsson PE, J. Chromatogr. A., 1057, 115 (2004)
Lee EZ, Huh YS, Jun YS, Won HJ, Hong YK, Park TJ, Lee SY, Hong WH, J. Chromatogr. A., 1187, 11 (2008)
SooHoo JR, Walker GM, Biomedical Microdevices., 11, 323 (2009)
Tsukamoto M, Taira S, Yamamura S, Morita Y, Nagatani N, Takamura Y, Tamiya E, Analyst., 134, 1994 (2009)
Nam KH, Chang WJ, Hong H, Lim SM, Kim DI, Koo YM, Biomedical Microdevices., 7, 189 (2005)
Rodrigues GD, de Lemos LR, da Silva LHM, da Silva MDH, Minim LA, Coimbra JSD, Talanta., 80, 1139 (2010)
Flory PJ, J. Chem. Phys., 10 (1942)
Huggins ML, J. Chem. Phys., 46 (1942)
Walter H, Brooks DE, Fisher D, Partitioning in Aqueous Two Phase Systems; Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, Inc. (1985)
Edmond E, Ogston AG, Biochem. J., 109 (1968)
Haynes CA, Beynon RV, King RS, Blanch HW, Prausnitz JM, J. Phys. Chem., 93, 5612 (1989)
King RS, Blanch HW, Prausnitz JM, AIChE J., 34, 1585 (1988)
Cabezas HJ, Kabiri-Badr M, Szlag DC, Bioseparation., 1, 227 (1990)
Walter H, Johansson G, Brooks DE, Anal. Biochem., 197, 1 (1991)
Grossman PD, Gainer JL, Biotechnol. Progress., 4, 6 (1988)
Kim CW, Vol. Ph. D., MIT (1987)
Kang CH, Sandler SI, Fluid Phase Equilib., 38 (1987)
Hatti-Kaul R, Ed., Aqueous Two-Phase Systems, Methods and Protocols, Humana Press Inc., Totowa (2000)
Baski JN, Hatton TA, Suter UW, Macromolecules., 20, 1300 (1987)
Johansso G, Acta Chemica Scandinavica Series B-Organic Chemistry and Biochemistry B., 28, 873 (1974)
Andrews BA, Asenjo JA, Sep. Sci. Technol., 45, 2165 (2010)
Xiao H, Liang D, Liu GC, Guo M, Xing WL, Cheng J, Lab on a Chip., 6, 1067 (2006)
Yamada M, Kasim V, Nakashima M, Edahiro J, Seki M, Biotechnol. Bioeng., 88(4), 489 (2004)
Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T, Anal. Chem., 74, 2014 (2002)
Munchow G, Schonfeld F, Hardt S, Graf K, Langmuir, 24(16), 8547 (2008)
Mu XA, Liang QL, Hu P, Ren KN, Wang YM, Luo GA, Microfluidics and Nanofluidics., 9, 365 (2010)
Feng XJ, Du W, Luo QM, Liu BF, Analytica Chimica Acta., 650, 83 (2009)
Feng Y, Wang M, Progress Chem., 18, 966 (2006)
Maruyama T, Matsushita H, Uchida J, Kubota F, Kamiya N, Goto M, Anal. Chem., 76, 4495 (2004)
Hibara A, Nonaka M, Hisamoto H, Uchiyama K, Kikutani Y, Tokeshi M, Kitamori T, Anal. Chem., 74, 1724 (2002)
Maruyama T, Uchida J, Ohkawa T, Futami T, Katayama K, Nishizawa K, Sotowa K, Kubota F, Kamiyaa N, Goto M, Lab on a Chip., 3, 308 (2003)
Hibara A, Tokeshi M, Uchiyama K, Hisamoto H, Kitamori T, Anal. Sci., 17, 89 (2001)
Smirnova A, Shimura K, Hibara A, Proskurnin MA, Kitamori T, Anal. Sci., 23, 103 (2007)
Reddy V, Zahn JD, J. Colloid Interface Sci., 286(1), 158 (2005)
Hibara A, Iwayama S, Matsuoka S, Ueno M, Kikutani Y, Tokeshi M, Kitamori T, Analy. Chem., 77, 943 (2005)
Huh YS, Yang K, Hong YK, Jun YS, Hong WH, Kim DH, Process Biochem., 42, 649 (2007)
Huh YS, Park TJ, Yang K, Lee EZ, Hong YK, Lee SY, Kim DH, Hong WH, Ultramicroscopy., 108, 1365 (2008)
Negrete A, Ling TC, Lyddiatt A, J. Chromatography B-Analytical Technologies in the Biomedical and Life Sci., 854, 13 (2007)
Wu YT, Zhu ZQ, Chem. Eng. Sci., 54(4), 433 (1999)
Tagawa T, Aljbour S, Matouq M, Yamada H, Chem. Eng. Sci., 62(18-20), 5123 (2007)
Maruyama T, Kaji T, Ohkawa T, Sotowa K, Matsushita H, Kubota F, Kamiya N, Kusakabe K, Goto M, Analyst., 129, 1008 (2004)
Yamakawa T, Oshite H, Katayama K, Futami T, Ohkawa T, Nishizawa K, Kagaku Kogaku Ronbunshu., 30, 95 (2004)
Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I, Microfluidics and Nanofluidics., 7, 217 (2009)
Zhao YC, Chen GW, Yuan Q, AIChE J., 53(12), 3042 (2007)
Huh YS, Jeong CM, Chang HN, Lee SY, Hong WH, Park TJ, Biomicrofluidics., 4 (2010)
Liu JH, Chen X, Shao ZZ, Zhou P, J. Appl. Polym. Sci., 90(4), 1108 (2003)
Walter H, Krob EJ, Pedram A, Cell Biophysics., 4, 273 (1982)
Gerson DF, Scheer D, Biochimica Et Biophysica Acta., 602, 506 (1980)
Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S, Anal. Chem., 79, 1369 (2007)
Yamada M, Nakashima M, Seki M, Anal. Chem., 76, 5465 (2004)
Zhang XL, Cooper JM, Monaghan PB, Haswell SJ, Lab on a Chip., 6, 561 (2006)
Yamada M, Seki M, Lab on a Chip., 5, 1233 (2005)
Yamada M, Seki M, Analy. Chem., 78, 1357 (2006)
Jaggi RD, Sandoz R, Effenhauser CS, Microfluidics and Nanofluidics., 3, 47 (2007)
Yang S, Undar A, Zahn JD, Lab on a Chip., 6, 871 (2006)
Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW, Anal. Chem., 77, 933 (2005)
Ueno K, Kim HB, Kitamura N, Anal. Sci., 19, 391 (2003)
Hannig K, J. Chromatogr., 159, 183 (1978)
Raymond DE, Manz A, Widmer HM, Analy. Chem., 66, 2858 (1994)
Raymond DE, Manz A, Widmer HM, Analy. Chem., 68, 2515 (1996)
Fonslow BR, Barocas VH, Bowser MT, Anal. Chem., 78, 5369 (2006)
Zhang CX, Manz A, Anal. Chem., 75, 5759 (2003)
Xu Y, Zhang CX, Janasek D, Manz A, Lab on a Chip., 3, 224 (2003)
Macounova K, Cabrera CR, Yager P, Anal. Chem., 73, 1627 (2001)
Cabrera CR, Yager P, Electrophoresis, 22(2), 355 (2001)
Lu H, Gaudet S, Schmidt MA, Jensen KF, Anal. Chem., 76, 5705 (2004)
Munchow G, Hardt S, Kutter JP, Drese KS, Lab on a Chip., 7, 98 (2007)
Clark WM, Chemtech., 22, 425 (1992)
Marando MA, Clark WM, Sep. Sci. Technol., 28, 1561 (1993)
Theos CW, Clark WM, Appl. Biochem. Biotechnol., 54(1-3), 143 (1995)
Levine ML, Bier M, Electrophoresis., 11, 605 (1990)
Levine ML, Cabezas H, Bier M, J. Chromatogr., 607, 113 (1992)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로