Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 23, 2023
Accepted August 23, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Two-step continuous synthesis of tetraethylthiuram disulfide in microstructured reactors
1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China 2College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China 3College of Mechanic and Power Engineering, Nanjing University of Technology, No 5 Xin Mofan Road, Nanjing 210009, P. R. China
Korean Journal of Chemical Engineering, March 2011, 28(3), 723-730(8), 10.1007/s11814-010-0436-8
Download PDF
Abstract
We present two-step continuous synthesis of tetraethyl thiuram disulfide using microstructured reactors, starting with the formation of N, N-diethyldithiocarbamic acid from carbon disulfide and diethylamine in the first mi- crostructured reactor, and the oxidation of N, N-diethyldithiocarbamic acid by hydrogen peroxide in the second one. We studied the effects of reaction temperature, LHSV and total flow rate on the yield of the product. In the first microstructured reactor assembled with an HPIMM micromixer and a stainless steel capillary as the delay loop, the yield of N, N-diethyldithiocarbamic acid reached 96.3% in the 40 wt% diethylamine ethanol solution under reaction conditions of the CS2/(C2H5)2NH molar ratio of 1.1 : 1, total flow rate of 4 mL/min, LHSV of 42.4 h^(-1), and reaction temperature of 25 ℃. Consequently, the obtained N, N-diethyldithiocarbamic acid solution was reacted with H2O2 solution in another microstructured_x000D_
reactor assembled with SIMM-V2 and a PTFE capillary as the delay loop, the yield of the high purity tetraethylthiuram disulfide reached 89.3% under the optimized reaction conditions.
Keywords
References
Akiba M, Hashim AS, Prog. Polym. Sci., 22, 475 (1997)
Gradwell MHS, Grooff D, J. Appl. Polym. Sci., 83, 1119 (2001)
Akron AB and Tazuma JJ, US Patent, 4,144,272 (1979)
FLEXSYS, WO Patent, 0,050,393 (2000)
Torii S, Tanakea H and Mishima K, US Patent, 4,120,764 (1978)
Hessel V, Hofmann C, Lowe H, Meudt A, Scherer S, Schonfeld F, Werner B, Org. Process Res. Dev., 8, 511 (2004)
Hessel V, Hofmann C, Lob P, Lowe H, Parals M, Chem. Eng. Technol., 30(3), 355 (2007)
Benz K, Jackel KP, Regenauer KJ, Schiewe J, Drese K, Ehrfeld W, Hessel V, Lowe H, Chem. Eng. Technol., 24(1), 11 (2001)
Jahnisch K, Hessel V, Lowe H, Baerns M, Angew. Chem. Int. Ed., 43, 406 (2004)
Muller A, Drese K, Gnaser H, Hampe M, Hessel V, Lowe H, Schmitt S, Zapf R, Catal. Today, 81(3), 377 (2003)
Hessel V, Lowe H, Stange T, Lab Chip., 2, 14N (2002)
Zhang X, Jones P, Haswell SJ, Chem. Eng. J., 135, S82 (2008)
Shui LL, Eijkel JCT, van den Berg A, Sens. Actuators, B., 121, 263 (2007)
Yoshida JI, Nagaki A, Yamada T, Chem. Eur. J., 14, 7450 (2008)
Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT, Chem. Rev., 107(6), 2300 (2007)
Kobayashi J, Mori Y, Kobayashi S, Chem. Asian J., 1, 22 (2006)
Rumi L, Pfleger C, Spurr P, Klinkhammer U, Bannwarth W, Process Res. Dev., 13, 747 (2009)
Taghavi-Moghadam S, Kleemann A, Golbig KG, Process Res. Dev., 5, 652 (2001)
Kusakabe K, Morooka S, Maeda H, Korean J. Chem. Eng., 18(3), 271 (2001)
Lowe H, Hessel V, Lob P, Hubbard S, Process Res. Dev., 10, 1144 (2006)
van der Linden JJM, Hilberink PW, Kronenburg CMP, Kemperman GJ, Process Res. Dev., 12, 911 (2008)
Pelleter J, Renaud F, Process Res. Dev., 13, 698 (2009)
Sotowa KI, Miyoshi R, Lee CG, Kang Y, Kusakabe K, Korean J. Chem. Eng., 22(4), 552 (2005)
Yao XJ, Yao JF, Zhang LX, Xu NP, Catal. Lett., 132(1-2), 147 (2009)
Chen ZQ, Mod. Chem. Ind., 2, 25 (1991)
Hang DY, Ye K, Fine Chem. Intermed., 34, 54 (2004)
Kandlikar SG, Exp. Therm Fluid Sci., 26, 389 (2002)
Gradwell MHS, Grooff D, J. Appl. Polym. Sci., 83, 1119 (2001)
Akron AB and Tazuma JJ, US Patent, 4,144,272 (1979)
FLEXSYS, WO Patent, 0,050,393 (2000)
Torii S, Tanakea H and Mishima K, US Patent, 4,120,764 (1978)
Hessel V, Hofmann C, Lowe H, Meudt A, Scherer S, Schonfeld F, Werner B, Org. Process Res. Dev., 8, 511 (2004)
Hessel V, Hofmann C, Lob P, Lowe H, Parals M, Chem. Eng. Technol., 30(3), 355 (2007)
Benz K, Jackel KP, Regenauer KJ, Schiewe J, Drese K, Ehrfeld W, Hessel V, Lowe H, Chem. Eng. Technol., 24(1), 11 (2001)
Jahnisch K, Hessel V, Lowe H, Baerns M, Angew. Chem. Int. Ed., 43, 406 (2004)
Muller A, Drese K, Gnaser H, Hampe M, Hessel V, Lowe H, Schmitt S, Zapf R, Catal. Today, 81(3), 377 (2003)
Hessel V, Lowe H, Stange T, Lab Chip., 2, 14N (2002)
Zhang X, Jones P, Haswell SJ, Chem. Eng. J., 135, S82 (2008)
Shui LL, Eijkel JCT, van den Berg A, Sens. Actuators, B., 121, 263 (2007)
Yoshida JI, Nagaki A, Yamada T, Chem. Eur. J., 14, 7450 (2008)
Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT, Chem. Rev., 107(6), 2300 (2007)
Kobayashi J, Mori Y, Kobayashi S, Chem. Asian J., 1, 22 (2006)
Rumi L, Pfleger C, Spurr P, Klinkhammer U, Bannwarth W, Process Res. Dev., 13, 747 (2009)
Taghavi-Moghadam S, Kleemann A, Golbig KG, Process Res. Dev., 5, 652 (2001)
Kusakabe K, Morooka S, Maeda H, Korean J. Chem. Eng., 18(3), 271 (2001)
Lowe H, Hessel V, Lob P, Hubbard S, Process Res. Dev., 10, 1144 (2006)
van der Linden JJM, Hilberink PW, Kronenburg CMP, Kemperman GJ, Process Res. Dev., 12, 911 (2008)
Pelleter J, Renaud F, Process Res. Dev., 13, 698 (2009)
Sotowa KI, Miyoshi R, Lee CG, Kang Y, Kusakabe K, Korean J. Chem. Eng., 22(4), 552 (2005)
Yao XJ, Yao JF, Zhang LX, Xu NP, Catal. Lett., 132(1-2), 147 (2009)
Chen ZQ, Mod. Chem. Ind., 2, 25 (1991)
Hang DY, Ye K, Fine Chem. Intermed., 34, 54 (2004)
Kandlikar SG, Exp. Therm Fluid Sci., 26, 389 (2002)