ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 23, 2023
Accepted August 23, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Etherification of glycerol by isobutylene. Effects of the density of acidic sites in ion-exchange resin on the distribution of products

R&D Center, GS-Caltex Corporation, Daejeon 305-380, Korea 1School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
C16635@gscaltex.co.kr
Korean Journal of Chemical Engineering, March 2011, 28(3), 756-762(7), 10.1007/s11814-010-0452-8
downloadDownload PDF

Abstract

Etherification of glycerol by isobutylene was performed using ion-exchange resin Amberlyst 15, partially neutralized Amberlyst 15 as heterogeneous catalyst, and p-toluenesulfonic acid as a homogeneous catalyst. Amberlyst 15 exhibited strong internal diffusion limitations for the initial composition of reaction mixture. Diffusion limitations decrease in the course of reaction due to the accumulation of mono-ether having excellent solubilizing properties. Oligomerized isobutylene is a dominant by-product for high isobutylene-to-glycerol ratio and long contact time in the case_x000D_ of Amberlyst 15. Density reduction of acidic protons in Amberlyst 15 by partial ion exchange with sodium ions leads to considerable reduction of isobutylene affinity to Amberlyst 15, and as a result, it reduced losses of isobutylene. This partial neutralization leads to lower space-time yields of target products, but enhances selectivity to higher ethers with maintaining conversion of glycerol over 95%.

References

Melero JA, Vicente G, Morales G, Paniagua M, Moreno JM, Roldan R, Ezquerro A, Perez C, Appl. Catal. A: Gen., 346(1-2), 44 (2008)
Balaraju M, Rekha V, Prasad PSS, Devi BLAP, Prasad RBN, Lingaiah N, Appl. Catal. A: Gen., 354(1-2), 82 (2009)
Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A, Concepcion P, J. Catal., 269(1), 140 (2010)
Aresta M, Dibenedetto A, Nocito F, Ferragina C, J. Catal., 268(1), 106 (2009)
Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ, Appl.Catal. A-Gen., 381, 225 (2005)
Rahmat N, Abdullah AZ, Mohamed AR, Renewable and Sustainable Energy Reviews., 14, 987 (2010)
Frusteri F, Arena F, Bonura G, Cannilla C, Spadaro L, Di Blasi O, Appl. Catal. A: Gen., 367(1-2), 77 (2009)
Klepacova K, Mravec D, Kaszonyi A, Bajus M, Appl. Catal. A: Gen., 328(1), 1 (2007)
Karinen RS, Krause AOI, Appl. Catal. A: Gen., 306, 128 (2006)
Klepacva K, Maravec D, Bajus M, Appl. Catal. A-Gen., 294, 141 (2006)
Behr A, Obendorf L, Eng. Life Sci., 2, 185 (2002)
Tejero J, Cunill F, Izquierdo JF, Iborra M, Fite C, Parra D, Appl. Catal. A: Gen., 134(1), 21 (1996)
Honkela ML, Root A, Lindblad M, Krause AOI, Appl. Catal. A: Gen., 295(2), 216 (2005)
Panneman HJ, Beenackers AA, Ind. Eng. Chem. Res., 34(12), 4318 (1995)
Holub L, Jerabek K, J. Mol. Catal. A-Chem., 231(1-2), 21 (2005)
Plank C, Lorbeer E, J. Chromatogr. A.., 697, 461 (1995)
Drago RS, Dias JA, Maier TO, J. Am. Chem. Soc., 119(33), 7702 (1997)
Harmer MA, Sun Q, Appl. Catal. A: Gen., 221(1-2), 45 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로