Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 23, 2023
Accepted August 23, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of CO2 concentration on the performance of different thermodynamic models for prediction of CH4+CO2+H2O hydrate equilibrium conditions
School of Chemical, Petroleum and Gas Engineering, Semnan University, P. O. Box 35195-363, Semnan, Iran
Korean Journal of Chemical Engineering, March 2011, 28(3), 949-953(5), 10.1007/s11814-010-0422-1
Download PDF
Abstract
Accurate prediction of phase equilibria regarding CH4 replacement in hydrate phase with high pressure CO2 is an important issue in modern reservoir engineering. In this work we investigate the possibility of establishing a thermodynamic framework for predicting the hydrate equilibrium conditions for evaluation of CO2 injection scenarios. Different combinations of equations of state and mixing rules are applied and the most accurate thermodynamic models at different CO2 concentration ranges are proposed.
References
Milkov AV, Earth Science Reviews., 66, 183 (2004)
Chatti I, Delahaye A, Fournaison L, Petitet JP, Energy Conv. Manag., 46(9-10), 1333 (2005)
Gunn DA, Nelder LM, Rochelle CA, Bateman K, Jackson PD, Lovell MA, Hobbs PRN, Long D, Rees JG, Schultheiss P, Roberts J, Francis T, Terra Nova., 14, 43 (2002)
Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S, J. Chem. Eng. Jpn., 29(3), 478 (1996)
Lee H, Seo Y, Moudrakovski IL, Ripmeester A, Angew. Chem. Int. Ed., 42, 5084 (2003)
Yezdimer EM, Cummings PT, Chialvo AA, J. Phys. Chem., 106, 7982 (2002)
Komai T, Kawamura T, Kang S, Nagashima K, Yamamoto Y, J. Phys. Condens Matter., 14, 1395 (2002)
Hirohama S, Shimoyama Y, Wakabayashi A, Tatsuta S, Nishida N, J. Chem. Eng. Jpn., 29(6), 1014 (1996)
Sloan ED, Koh CA, Clathrate hydrates of natural gases., Chemical Industries, CRC Press, 3rd Ed. (2008)
Soave G, Chem. Eng. Sci., 4, 1197 (1972)
Valderrama JO, J. Chem. Eng. Japan., 23, 87 (1990)
Avlonitis D, Danesh A, Todd AC, Fluid Phase Equilib., 94, 181 (1994)
Chatti I, Delahaye A, Fournaison L, Petitet JP, Energy Conv. Manag., 46(9-10), 1333 (2005)
Gunn DA, Nelder LM, Rochelle CA, Bateman K, Jackson PD, Lovell MA, Hobbs PRN, Long D, Rees JG, Schultheiss P, Roberts J, Francis T, Terra Nova., 14, 43 (2002)
Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S, J. Chem. Eng. Jpn., 29(3), 478 (1996)
Lee H, Seo Y, Moudrakovski IL, Ripmeester A, Angew. Chem. Int. Ed., 42, 5084 (2003)
Yezdimer EM, Cummings PT, Chialvo AA, J. Phys. Chem., 106, 7982 (2002)
Komai T, Kawamura T, Kang S, Nagashima K, Yamamoto Y, J. Phys. Condens Matter., 14, 1395 (2002)
Hirohama S, Shimoyama Y, Wakabayashi A, Tatsuta S, Nishida N, J. Chem. Eng. Jpn., 29(6), 1014 (1996)
Sloan ED, Koh CA, Clathrate hydrates of natural gases., Chemical Industries, CRC Press, 3rd Ed. (2008)
Soave G, Chem. Eng. Sci., 4, 1197 (1972)
Valderrama JO, J. Chem. Eng. Japan., 23, 87 (1990)
Avlonitis D, Danesh A, Todd AC, Fluid Phase Equilib., 94, 181 (1994)