Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 13, 2010
Accepted December 27, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives
State Key Laboratory of Coal Combustion, Department of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Korean Journal of Chemical Engineering, April 2011, 28(4), 1042-1046(5), 10.1007/s11814-010-0469-z
Download PDF
Abstract
To improve the stability of CaO adsorption capacity for CO2 capture during multiple carbonation/calcination cycles, modified CaO-based sorbents were synthesized by sol-gel-combustion-synthesis (SGCS) method and wet physical mixing method, respectively, to overcome the problem of loss-in-capacity of CaO-based sorbents. The cyclic CaO adsorption capacity of the sorbents as well as the effect of the addition of La2O3 or Ca12Al14O33 was investigated in a fixed-bed reactor. The transient phase change and microstructure were characterized by X-ray diffraction (XRD) and field emission scanning electron microscop(FSEM), respectively. The experimental results indicate that La2O3 played an active role in the carbonation/calcination reactions. When the sorbents were made by wet physical mixing method, CaO/Ca12Al14O33 was much better than CaO/La2O3 in cyclic CO2 capture performance. When the sorbents were made by SGCS method, the synthetic CaO/La2O3 sorbent provided the best performance of a carbonation conversion of up to 93% and an adsorption capacity of up to 0.58 g-CO2/g-sorbent after 11 cycles.
Keywords
References
Bachu S, Prog. Energy Combust., 34, 254 (2008)
Seo Y, Jo SH, Ryu HJ, Bae DH, Ryu CK, Yi CK, Korean J. Chem. Eng., 24(3), 457 (2007)
Choi WJ, Seo JB, Cho SW, Park SW, Oh KJ, Korean J. Chem. Eng., 26(3), 705 (2009)
Khoshandam B, Kumar RV, Allahgholi L, Korean J. Chem. Eng., 27(3), 766 (2010)
Blamey J, Anthony EJ, Wang J, Fennell PS, Prog. Energy Combust., 36, 260 (2010)
Ryu HJ, Shun DW, Bae DH, Park MH, Korean J. Chem. Eng., 26(2), 523 (2009)
Song Q, Xiao R, Deng Z, Shen L, Zhang M, Korean J. Chem. Eng., 26(2), 592 (2009)
Fang F, Li ZS, Cai NS, Korean J. Chem. Eng., 26(5), 1414 (2009)
Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178 (2008)
Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 48(19), 8906 (2009)
Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 49(15), 6916 (2010)
Feng B, Liu WQ, Li X, An H, Energy Fuels, 20(6), 2417 (2006)
Abanades JC, Alvarez D, Energy Fuels, 17(2), 308 (2003)
Hughes RW, Lu D, Anthony EJ, Wu YH, Ind. Eng. Chem. Res., 43(18), 5529 (2004)
Gupta H, Fan LS, Ind. Eng. Chem. Res., 41(16), 4035 (2002)
Li ZS, Cai NS, Huang YY, Ind. Eng. Chem. Res., 45(6), 1911 (2006)
Albrecht KO, Wagenbach KS, Satrio JA, Shanks BH, Wheelock TD, Ind. Eng. Chem. Res., 47(20), 7841 (2008)
Liu W, Feng B, Wu Y, Wang G, Barry J, Costa D, Environ. Sci. Technol., 44, 3093 (2010)
Liu W, Low NW, Fen B, Wang G, Costa D, Environ. Sci. Technol., 44, 841 (2010)
Luo C, Zheng Y, Ding N, Wu QL, Bian GA, Zheng CG, Ind. Eng. Chem. Res., 49(22), 11778 (2010)
Li LY, King DL, Nie ZM, Howard C, Ind. Eng. Chem. Res., 48(23), 10604 (2009)
Shirsat AN, Ali M, Kaimal KNG, Bharadwaj SR, Das D, Thermochim. Acta, 399(1-2), 167 (2003)
Seo Y, Jo SH, Ryu HJ, Bae DH, Ryu CK, Yi CK, Korean J. Chem. Eng., 24(3), 457 (2007)
Choi WJ, Seo JB, Cho SW, Park SW, Oh KJ, Korean J. Chem. Eng., 26(3), 705 (2009)
Khoshandam B, Kumar RV, Allahgholi L, Korean J. Chem. Eng., 27(3), 766 (2010)
Blamey J, Anthony EJ, Wang J, Fennell PS, Prog. Energy Combust., 36, 260 (2010)
Ryu HJ, Shun DW, Bae DH, Park MH, Korean J. Chem. Eng., 26(2), 523 (2009)
Song Q, Xiao R, Deng Z, Shen L, Zhang M, Korean J. Chem. Eng., 26(2), 592 (2009)
Fang F, Li ZS, Cai NS, Korean J. Chem. Eng., 26(5), 1414 (2009)
Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178 (2008)
Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 48(19), 8906 (2009)
Manovic V, Anthony EJ, Ind. Eng. Chem. Res., 49(15), 6916 (2010)
Feng B, Liu WQ, Li X, An H, Energy Fuels, 20(6), 2417 (2006)
Abanades JC, Alvarez D, Energy Fuels, 17(2), 308 (2003)
Hughes RW, Lu D, Anthony EJ, Wu YH, Ind. Eng. Chem. Res., 43(18), 5529 (2004)
Gupta H, Fan LS, Ind. Eng. Chem. Res., 41(16), 4035 (2002)
Li ZS, Cai NS, Huang YY, Ind. Eng. Chem. Res., 45(6), 1911 (2006)
Albrecht KO, Wagenbach KS, Satrio JA, Shanks BH, Wheelock TD, Ind. Eng. Chem. Res., 47(20), 7841 (2008)
Liu W, Feng B, Wu Y, Wang G, Barry J, Costa D, Environ. Sci. Technol., 44, 3093 (2010)
Liu W, Low NW, Fen B, Wang G, Costa D, Environ. Sci. Technol., 44, 841 (2010)
Luo C, Zheng Y, Ding N, Wu QL, Bian GA, Zheng CG, Ind. Eng. Chem. Res., 49(22), 11778 (2010)
Li LY, King DL, Nie ZM, Howard C, Ind. Eng. Chem. Res., 48(23), 10604 (2009)
Shirsat AN, Ali M, Kaimal KNG, Bharadwaj SR, Das D, Thermochim. Acta, 399(1-2), 167 (2003)