Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 10, 2010
Accepted November 15, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency
1State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China 2School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China 3D.W. Reynolds Department of Geriatrics (VAMC151/LR), University of Arkansas for Medical Sciences, 4300 W 7th St., Little Rock, Arkansas 72205, USA 4Biology Department, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601, USA
mingll@jiangnan.edu.cn
Korean Journal of Chemical Engineering, April 2011, 28(4), 1078-1084(7), 10.1007/s11814-010-0483-1
Download PDF
Abstract
The aim of this study was to increase pyruvate production efficiency in a multi - vitamin auxotrophic yeast, Torulopsis glabrata. This was achieved by decreasing intracellular NADH content through the introduction of two different NADH reoxidation pathways: one in the cytoplasm and the other in mitochondria. A nox (encoding a cytoplasmic H2O-forming NADH oxidase) and an AOX1 (encoding a mitochondrial alternative oxidase) were successfully expressed_x000D_
heterologously in T. glabrata, resulting in a decrease in the NADH and ATP contents of 55% and 26%, (in T. glabrata NOX) and 45% and 47% (in T. glabrata AOX), respectively. The decreases in nucleotide concentrations led to increases in the glucose consumption rate, the pyruvate yield and pyruvate productivity of 27%, 15% and 22% (in T. glabrata NOX) and 38%, 21%, and 29% (in T. glabrata AOX), respectively, compared with the corresponding values of the control. We conclude that this method provides an alternative way to enhance the production efficiency of NADHrelated metabolites.
References
Zhu YH, Eiteman MA, Altman R, Altman E, Appl. Environ. Microbiol., 74, 6649 (2008)
Li Y, Chen J, Lun SY, Appl. Biochem. Biotechnol., 57, 451 (2001)
Larsson C, Nilsson A, Blomberg A, Gustafsson L, J. Bacteriol., 179, 7243 (1997)
Causey TB, Shanmugam KT, Yomano LP, Ingram LO, Proc. Natl. Acad. Sci. USA., 101, 2235 (2004)
Pritchard L, Kell DB, Eur. J. Biochem., 269, 3894 (2002)
Chuang GS, Chiou MS, Korean J. Chem. Eng., 23(3), 419 (2006)
Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J, Proc. Natl. Acad. Sci. USA., 104, 2402 (2007)
Alberti KG, J. Clin. Pathol. Suppl. (R Coll Pathol)., 11, 14 (1977)
Rigoulet M, Aguilaniu H, Averet N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L, Mol. Cell. Biochem., 256, 73 (2004)
Liu LM, Li Y, Li H, Chen J, FEMS Yeast Res., 6, 1117 (2006)
Zhou JW, Huang LX, Liu LM, Chen J, J. Biotechnol., 144, 120 (2009)
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M, Nucleic. Acid. Res., 34, D354 (2006)
Hou J, Lages NF, Oldiges M, Vemuri GN, Metab. Eng., 11, 253 (2009)
Johnson CH, Prigge JT, Warren AD, McEwen JE, Yeast., 20, 381 (2003)
Guerrero-Castillo S, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S, Biochim. Biophys. Acta., 1787, 75 (2009)
Heux S, Cachon R, Dequin S, Metab. Eng., 8, 303 (2006)
Zhou JW, Dong Z, Liu L, Du G, Chen J, J. Microbiol. Methods., 76, 70 (2009)
Liu LM, Li Y, Li HZ, Chen J, Lett. Appl. Microbiol., 39, 199 (2004)
Qin Y, Dong ZY, Zhou JW, Liu LM, Chen J, Wei Sheng Wu Xue Bao., 49, 1483 (2009)
Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J, Metab. Eng., 6, 352 (2004)
Bernofsky C, Swan M, Anal. Biochem., 53, 452 (1973)
Leonardo MR, Cunningham PR, Clark DP, J. Bacteriol., 175, 870 (1993)
Liu LM, Li Y, Shi Z, Du G, Chen J, J. Biotechnol., 126, 173 (2006)
Valadi A, Granath K, Gustafsson L, Adler L, J. Biol. Chem., 279, 39677 (2004)
Postma E, Verduyn C, Scheffers WA, Van Dijken JP, Appl. Environ. Microbiol., 55, 468 (1989)
Lin AP, McAlister-Henn L, J. Biol. Chem., 277, 22475 (2002)
Klassen R, Fricke J, Pfeiffer A, Meinhardt F, Biotechnol. Lett., 30(6), 1041 (2008)
Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C, Eukaryot. Cell., 7, 848 (2008)
Livak KJ, Schmittgen TD, Methods., 25, 402 (2001)
Moore AL, Siedow JN, Biochim. Biophys. Acta., 1059, 121 (1991)
Berthold DA, Voevodskaya N, Stenmark P, Graslund A, Nordlund P, J. Biol. Chem., 277, 43608 (2002)
Zhang DD, Liang N, Shi ZP, Liu LM, Chen J, Du GC, Biotechnol. Bioprocess. Eng., 14, 134 (2009)
Larsson C, Pahlman IL, Gustafsson L, Yeast., 16, 797 (2000)
von Jagow G, Klingenberg M, Eur. J. Biochem., 12, 583 (1970)
Li Y, Chen J, Lun SY, Appl. Biochem. Biotechnol., 57, 451 (2001)
Larsson C, Nilsson A, Blomberg A, Gustafsson L, J. Bacteriol., 179, 7243 (1997)
Causey TB, Shanmugam KT, Yomano LP, Ingram LO, Proc. Natl. Acad. Sci. USA., 101, 2235 (2004)
Pritchard L, Kell DB, Eur. J. Biochem., 269, 3894 (2002)
Chuang GS, Chiou MS, Korean J. Chem. Eng., 23(3), 419 (2006)
Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J, Proc. Natl. Acad. Sci. USA., 104, 2402 (2007)
Alberti KG, J. Clin. Pathol. Suppl. (R Coll Pathol)., 11, 14 (1977)
Rigoulet M, Aguilaniu H, Averet N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman IL, Manon S, Gustafsson L, Mol. Cell. Biochem., 256, 73 (2004)
Liu LM, Li Y, Li H, Chen J, FEMS Yeast Res., 6, 1117 (2006)
Zhou JW, Huang LX, Liu LM, Chen J, J. Biotechnol., 144, 120 (2009)
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M, Nucleic. Acid. Res., 34, D354 (2006)
Hou J, Lages NF, Oldiges M, Vemuri GN, Metab. Eng., 11, 253 (2009)
Johnson CH, Prigge JT, Warren AD, McEwen JE, Yeast., 20, 381 (2003)
Guerrero-Castillo S, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S, Biochim. Biophys. Acta., 1787, 75 (2009)
Heux S, Cachon R, Dequin S, Metab. Eng., 8, 303 (2006)
Zhou JW, Dong Z, Liu L, Du G, Chen J, J. Microbiol. Methods., 76, 70 (2009)
Liu LM, Li Y, Li HZ, Chen J, Lett. Appl. Microbiol., 39, 199 (2004)
Qin Y, Dong ZY, Zhou JW, Liu LM, Chen J, Wei Sheng Wu Xue Bao., 49, 1483 (2009)
Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J, Metab. Eng., 6, 352 (2004)
Bernofsky C, Swan M, Anal. Biochem., 53, 452 (1973)
Leonardo MR, Cunningham PR, Clark DP, J. Bacteriol., 175, 870 (1993)
Liu LM, Li Y, Shi Z, Du G, Chen J, J. Biotechnol., 126, 173 (2006)
Valadi A, Granath K, Gustafsson L, Adler L, J. Biol. Chem., 279, 39677 (2004)
Postma E, Verduyn C, Scheffers WA, Van Dijken JP, Appl. Environ. Microbiol., 55, 468 (1989)
Lin AP, McAlister-Henn L, J. Biol. Chem., 277, 22475 (2002)
Klassen R, Fricke J, Pfeiffer A, Meinhardt F, Biotechnol. Lett., 30(6), 1041 (2008)
Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C, Eukaryot. Cell., 7, 848 (2008)
Livak KJ, Schmittgen TD, Methods., 25, 402 (2001)
Moore AL, Siedow JN, Biochim. Biophys. Acta., 1059, 121 (1991)
Berthold DA, Voevodskaya N, Stenmark P, Graslund A, Nordlund P, J. Biol. Chem., 277, 43608 (2002)
Zhang DD, Liang N, Shi ZP, Liu LM, Chen J, Du GC, Biotechnol. Bioprocess. Eng., 14, 134 (2009)
Larsson C, Pahlman IL, Gustafsson L, Yeast., 16, 797 (2000)
von Jagow G, Klingenberg M, Eur. J. Biochem., 12, 583 (1970)