ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 29, 2010
Accepted October 19, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Formation of 1-D ZnTe nanocrystals by aerosol-assisted spray pyrolysis

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea 1Department of Chemical Engineering, University of Ulsan, Ulsan 680-749, Korea
koo@sogang.ac.kr
Korean Journal of Chemical Engineering, April 2011, 28(4), 1120-1125(6), 10.1007/s11814-010-0458-2
downloadDownload PDF

Abstract

One-dimensional (1-D) ZnTe nanowires were prepared by aerosol-assisted spray pyrolysis using a mixture of ZnO (1 mmol)/OA (4 mL)/TOPO (0.8 g)/ODE (4 mL) as Zn precursor and Te/TOP (3 mL of 0.75M) as Te precursor. The shape, size, and crystal structure of products were characterized by means of transmission electron microscope (TEM) and X-ray diffraction (XRD). The shape evolution of ZnTe nanocrystals from nanodots to nanowires was achieved by controlling the reaction temperature. ZnTe nanodots with average diameter of 8.3 nm were synthesized at 300 ℃ . “Earthworm-like” shaped ZnTe (linear ZnTe aggregates) consisting of primary ZnTe nanodots of about 16 nm in diameter were obtained at 400 ℃ . In addition, 1-D ZnTe nanowires were prepared at reaction temperature higher than 450 ℃ . Those experimental results suggest that ZnTe nanowires with zinc blende structure are formed from ZnTe nanodots by the oriented attachment due to insufficient surface capping of surfactant molecules and by strong dipole-dipole interaction of nanodots, followed by self-organization of linear aggregates at higher reaction temperatures. The linear ZnTe aggregates consisting of primary ZnTe nanodots may be an intermediate stage in the formation process of nanowires from nanodots.

References

Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59 (2000)
Chen X, Nazzal A, Goorskey D, Xiao M, Peng ZA, Peng XG, Phys. Rev., B64, 245304 (2001)
Manna L, Scher EC, Alivisatos AP, J. Clust. Sci., 13, 521 (2002)
Jun YW, Seo JW, Oh SJ, Cheon J, Coord. Chem. Rev., 249, 1766 (2005)
Manna L, Scher EC, Alivisatos AP, J. Am. Chem. Soc., 122(51), 12700 (2000)
Peng ZA, Peng XG, J. Am. Chem. Soc., 124(13), 3343 (2002)
Pradhan N, Xu HF, Peng XG, Nano Lett., 6, 720 (2006)
Lee SH, Kim YJ, Park J, Chem. Mater., 19, 4670 (2007)
Prasad PN, Nanophotonics., Wiley-Interscience, New York (2004)
Xu D, Shi X, Guo G, Gui L, Tang Y, J. Phys. Chem., B104, 5061 (2000)
Yang Q, Tang K, Wang C, Qian Y, Zhang S, J. Phys. Chem., B106, 9227 (2002)
Zhang XT, Liu Z, Ip KM, Leung YP, Li Q, Hark SK, J. Appl. Phys., 95, 5752 (2004)
Wu YY, Yang PD, J. Am. Chem. Soc., 123(13), 3165 (2001)
Cushing BL, Kolesnichenko VL, O'Connor CJ, Chem. Rev., 104(9), 3893 (2004)
Mahalingam T, John VS, Rajendran S, Sebastian PJ, Semicond. Sci. Technol., 17, 465 (2002)
Li L, Yang Y, Huang X, Li G, Zhang L, J. Phys. Chem., B109, 12394 (2005)
Crowder BL, Morehead FF, Wagner PR, Appl. Phys. Lett., 8, 148 (1966)
Bhunia S, Bose DN, J. Cryst. Growth., 186, 535 (1998)
Mingo N, Appl. Phys. Lett., 85, 5986 (2004)
Peng ZA, Peng XG, J. Am. Chem. Soc., 123(7), 1389 (2001)
Li L, Wu QS, Ding YP, Wang PM, Mater. Lett., 59, 1623 (2005)
Li YD, Ding Y, Wang ZY, Adv. Mater., 11(10), 847 (1999)
Jun YW, Choi CS, Cheon J, Chem. Commun., 101 (2001)
Yong KT, Sahoo Y, Zeng H, Swihart MT, Minter JR, Prasad PN, Chem. Mater., 19, 4108 (2007)
Wang FD, Dong AG, Sun JW, Tang R, Yu H, Buhro WE, Inorg. Chem., 45(19), 7511 (2006)
Fanfair DD, Korgel BA, Cryst. Growth Des., 8, 3246 (2008)
Meng QF, Jiang CB, Mao SX, J. Cryst. Growth, 310(20), 4481 (2008)
Kim DJ, Jang HD, Kim EJ, Koo KK, Ultramicroscopy., 108, 1278 (2008)
Kim DJ, Koo KK, Cryst. Growth Des., 9, 1153 (2009)
Okuyama K, Lenggoro IW, Tagami N, Tamaki S, Tohge N, J. Mater. Sci., 32(5), 1229 (1997)
Xia B, Lenggoro IW, Okuyama K, Adv. Mater., 13(20), 1579 (2001)
Didenko YT, Suslick KS, J. Am. Chem. Soc., 127(35), 12196 (2005)
Skrabalak SE, Suslick KS, J. Am. Chem. Soc., 127(28), 9990 (2005)
Huang Y, Zheng Z, Ai Z, Zhang L, Fan X, Zou Z, J. Phys. Chem., B110, 19323 (2006)
Zhang H, Swihart MT, Chem. Mater., 19, 1290 (2007)
Bucko MM, Oblakowski J, J. Eur. Ceram. Soc., 27, 3625 (2007)
Bang JH, Suh WH, Suslick KS, Chem. Mater., 20, 4033 (2008)
Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ, Wang SJJ, J. Phys. Chem., B1108, 17119 (2004)
Tang Z, Kotov NA, Giersig M, Science., 297, 237 (2002)
Yu JH, Joo J, Park HM, Baik SI, Kim YW, Kim SC, Hyeon T, J. Am. Chem. Soc., 127(15), 5662 (2005)
Lee EJH, Ribeiro C, Longo E, Leite ER, J. Phys. Chem., B109, 20842 (2005)
Lee SM, Jun YW, Cho SN, Cheon J, J. Am. Chem. Soc., 1124, 11244 (2002)
Lee SM, Cho SN, Cheon J, Adv. Mater., 15(5), 441 (2003)
Yu WW, Wang YA, Peng X, Chem. Mater., 15, 4300 (2003)
Peng XG, Adv. Mater., 15(5), 459 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로