Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 19, 2010
Accepted November 15, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Computational fluid dynamics modeling of high temperature air combustion in an heat recovery steam generator boiler
CFD Research Centre, Chemical Engineering Department, Razi University, Kermanshah, Iran 1Faculty of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait
Korean Journal of Chemical Engineering, May 2011, 28(5), 1181-1187(7), 10.1007/s11814-010-0481-3
Download PDF
Abstract
This paper reports a numerical study on the possibility of using high temperature air combustion (HiTAC) technique in the heat recovery steam generator (HRSG) boiler of the Fajr Petrochemical Complex, Iran. For this purpose a theoretical fuel nozzle which operates in HiTAC mode of combustion has been installed and modeled using the computational fluid dynamics (CFD) technique. By aim of establishing an efficient heat transfer rate to the boiler’s tubes, the proper nozzle location and an optimum mass flow rate of fuel have been found. The results show that by using this modification it is possible to increase the steam temperature up to 37 percent.
Keywords
References
Tanaka R, Hasegawa T, Innovative technology to change flame characteristics with highly preheated air combustion., Proceedings of Japanese Flame Days, Osaka, 129 (1997)
Kong L, Ding Y, Zhang Y, Yuan L, Wu Z, Korean J. Chem. Eng., 26(2), 534 (2009)
Wu SR, Chang WC, Chiao J, Fuel., 86, 820 (2007)
Chung DH, Yang JB, Noh DS, Kim WB, Korean J. Chem. Eng., 16(4), 489 (1999)
Benini E, Pandolfo S, Zoppellari S, Appl. Therm. Eng., 29, 3506 (2009)
Kitagawa K, Konishi N, Arai N, Gupta AK, J. Gas. Turb. Power., 125, 326 (2003)
Gupta AK, Li Z, J. Energy Res., 5, 247 (1997)
Christo E, Combust. Flame, 142(1-2), 117 (2005)
Lille S, Blasiak W, Jewartowski M, Energy, 30(2-4), 373 (2005)
Kim SH, Huh KY, Dally B, Proc. Combust. Inst., 30, 751 (2005)
Rahimi M, Khoshhal A, Shariati SM, Appl. Therm. Eng., 26, 2192 (2006)
Khoshhal A, Rahimi M, Alsairafi AA, Int. Commun. Heat Mass Trans., 36, 750 (2009)
Seo HK, Shin DH, Chung JH, Kim BJ, Park SM, Lim HC, Korean J. Chem. Eng., 26(1), 72 (2009)
Liu H, Xin N, Cao Q, Sha L, Sun D, Wu S, Korean J. Chem. Eng., 26(4), 1137 (2009)
Orsino S, Weber R, Combust. Sci. Technol., 170, 1 (2001)
Kawai K, Yoshikawa K, Kobayashi H, Tsai JS, Matsuo M, Katsushima H, Energy Conv. Manag., 43(9-12), 1563 (2002)
Khazaei KA, Hamidi AA, Rahimi M, Chin. J. Chem. Eng., 17(5), 711 (2009)
Franco A, Casarosa C, Appl. Therm. Eng., 22, 1501 (2002)
Fluent Inc., Fluent 6.2 User’s Guide (2005)
Versteeg HK, Malalasekera W An introduction to computa-tional fluid dynamics; the finite volume method, Longman Scientific and Technical (1995)
Magnussen BF, Hjertager BH, On mathematical models of turbulent combustion with special emphasis on soot formation and combustion, 16th Symposium on combustion, The Combustion Institute (1976)
Siegel R, Howell JR, Thermal radiation heat transfer, 3rd Ed. Washington, Hemisphere Publishing Corporation (1992)
Chui E, Raithby G, Numeric. Heat Transfer, Part B., 23, 269 (1993)
Kong L, Ding Y, Zhang Y, Yuan L, Wu Z, Korean J. Chem. Eng., 26(2), 534 (2009)
Wu SR, Chang WC, Chiao J, Fuel., 86, 820 (2007)
Chung DH, Yang JB, Noh DS, Kim WB, Korean J. Chem. Eng., 16(4), 489 (1999)
Benini E, Pandolfo S, Zoppellari S, Appl. Therm. Eng., 29, 3506 (2009)
Kitagawa K, Konishi N, Arai N, Gupta AK, J. Gas. Turb. Power., 125, 326 (2003)
Gupta AK, Li Z, J. Energy Res., 5, 247 (1997)
Christo E, Combust. Flame, 142(1-2), 117 (2005)
Lille S, Blasiak W, Jewartowski M, Energy, 30(2-4), 373 (2005)
Kim SH, Huh KY, Dally B, Proc. Combust. Inst., 30, 751 (2005)
Rahimi M, Khoshhal A, Shariati SM, Appl. Therm. Eng., 26, 2192 (2006)
Khoshhal A, Rahimi M, Alsairafi AA, Int. Commun. Heat Mass Trans., 36, 750 (2009)
Seo HK, Shin DH, Chung JH, Kim BJ, Park SM, Lim HC, Korean J. Chem. Eng., 26(1), 72 (2009)
Liu H, Xin N, Cao Q, Sha L, Sun D, Wu S, Korean J. Chem. Eng., 26(4), 1137 (2009)
Orsino S, Weber R, Combust. Sci. Technol., 170, 1 (2001)
Kawai K, Yoshikawa K, Kobayashi H, Tsai JS, Matsuo M, Katsushima H, Energy Conv. Manag., 43(9-12), 1563 (2002)
Khazaei KA, Hamidi AA, Rahimi M, Chin. J. Chem. Eng., 17(5), 711 (2009)
Franco A, Casarosa C, Appl. Therm. Eng., 22, 1501 (2002)
Fluent Inc., Fluent 6.2 User’s Guide (2005)
Versteeg HK, Malalasekera W An introduction to computa-tional fluid dynamics; the finite volume method, Longman Scientific and Technical (1995)
Magnussen BF, Hjertager BH, On mathematical models of turbulent combustion with special emphasis on soot formation and combustion, 16th Symposium on combustion, The Combustion Institute (1976)
Siegel R, Howell JR, Thermal radiation heat transfer, 3rd Ed. Washington, Hemisphere Publishing Corporation (1992)
Chui E, Raithby G, Numeric. Heat Transfer, Part B., 23, 269 (1993)