Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 1, 2010
Accepted December 2, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simulation and performance evaluation of the anoxic/anaerobic/aerobic process for biological nutrient removal
School of Energy and Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090, China 1State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Korean Journal of Chemical Engineering, May 2011, 28(5), 1233-1240(8), 10.1007/s11814-010-0502-2
Download PDF
Abstract
As a modified configuration of the conventional anaerobic/anoxic/aerobic (AAO) process, a novel anoxic/ anaerobic/aerobic (Reversed AAO, RAAO) process has been extensively applied in domestic wastewater treatment plants (WWTP). In this study, the Activated Sludge Model No. 2d (ASM2d) and a secondary clarifier model were calibrated and applied to simulate a pilot-scale RAAO test and evaluate the operational performance of the RAAO process. For calibration of the biological model ASM2d, only four kinetic parameters were adjusted to accurately simulate_x000D_
in-process variations of ammonium, nitrate and phosphate. Simulation results by the calibrated model demonstrated that phosphorus accumulating organisms (PAO) in the RAAO process (0.243 gP·(gCOD)^(-1)) contains less poly-phosphate than the AAO process (0.266 gP·(gCOD)^(-1)). With the increasing mixed liquor recirculation ratio in the RAAO process, the fraction of heterotrophic biomass and autotrophic biomass both increased, whereas the PAO decreased owing to adverse effects of electron acceptors on phosphorus release and poly-hydroxy-alkanoates synthesis.
References
Tchobanoglous G, Burton FL, Stensel HD, Wastewater engineering: Treatment and reuse, Metcalf & Eddy Inc., New York (2003)
Henze M, Gujer W, Mino T, Activated sludge models ASM1, ASM2, ASM2D and ASM3, IWA Scientific and Technical Report, No. 9, London (2000)
Gernaey KV, van Loosdrecht MCM, Henze M, Lind M, Jørgensen SB, Environ. Model. Softw., 19, 763 (2004)
Nuhoglu A, Keskinler B, Yildiz E, Process Biochem., 40, 2467 (2005)
Ni BJ, Yu HQ, Appl. Microbiol. Biotechnol., 77(3), 723 (2007)
Siegrist H, Rieger L, Koch G, Kuhni M, Gujer W, Water Sci. Technol., 45, 61 (2002)
Pai TY, Process Biochem., 42, 978 (2007)
Makinia J, Swinarski M, Dobiegala E, Water Sci. Technol., 45, 209 (2002)
Makinia J, Rosenwinkel KH, Spering V, Water Res., 39, 1489 (2005)
van Veldhuizen HM, van Loosdrecht MCM, Heijnen JJ, Water Res., 33, 3459 (1999)
Cho MH, Lee J, Kim JH, Lim HC, Korean J. Chem. Eng., 27(3), 925 (2010)
Lee SH, Ko JH, Park JB, Im JH, Kim JR, Lee JJ, Kim CW, Korean J. Chem. Eng., 23(2), 203 (2006)
Zhang B, Gao TY, Chin. Water and Wastewater., 16, 11 (2000)
Fu G, Dong B, Zhou ZY, Gao TY, Chin. Water and Wastewater., 20, 53 (2004)
Kuba T, Wachtmeister A, van Loosdrecht MCM, Heijnen JJ, Water Sci. Technol., 30, 263 (1994)
Kuba T, van Loosdrecht MCM, Brandse FA, Heijnen JJ, Water Res., 31, 777 (1997)
Beccari M, Dionisi D, Giuliani A, Majone M, Ramadori R, Water Sci. Technol., 45, 157 (2002)
Zhou Z, Wu ZC, Wang ZW, Tang SJ, Gu GW, J. Chem. Technol. Biotechnol., 83(12), 1596 (2008)
Chinese NEPA, Water and wastewater monitoring methods, Chinese Environmental Science Publishing House, Beijing (1997)
Roeleveld PJ, van Loosdrecht MCM, Water Sci. Technol., 45, 77 (2002)
Ginestet P, Maisonnier A, Sperandio M, Water Sci. Technol., 45, 89 (2002)
Hulsbeek JJW, Kruit J, Roeleveld PJ, van Loosdrecht MCM, Water Sci. Technol., 45, 127 (2002)
Sin G, van Hulle SWH, De Pauw DJW, van Griensven A, Vanrolleghem PA, Water Res., 39, 2459 (2005)
Park SK, Lee MW, Lee DS, Park JM, Stud. Surf. Sci. Catal., 159, 401 (2006)
Filipe CDM, Daigger GT, Grady CPL, Water Environ. Res., 73, 213 (2001)
Zhang T, Liu Y, Fang HHP, Biotechnol. Bioeng., 92(2), 173 (2005)
Takacs I, Patry GG, Nolasco D, Water Res., 25, 1263 (1991)
Copp JB, The COST simulation benchmark: Description and simulator manual, Office for Official Publication of the European Community, Luxembourg (2002)
Zhou Z, Wu Z, Gu G, Wang Z, Asia Pac. J. Chem. Eng., Article in press.
Kuba T, van Loosdrecht MCM, Heijnen JJ, Water Res., 30, 1702 (1996)
Insel G, Sin G, Lee DS, Nopens I, Vanrolleghem PA, J. Chem. Technol. Biotechnol., 81(4), 679 (2006)
Brdjanovic D, van Loosdrecht MCM, Versteeg P, Hooijmans CM, Alaerts GJ, Heijnen JJ, Water Res., 34, 846 (2000)
Panswad T, Doungchai A, Anotai J, Water Res., 37, 409 (2003)
Rieger L, Koch G, Kuhni M, Gujer W, Siegrist H, Water Res., 35, 3887 (2001)
Henze M, Gujer W, Mino T, Activated sludge models ASM1, ASM2, ASM2D and ASM3, IWA Scientific and Technical Report, No. 9, London (2000)
Gernaey KV, van Loosdrecht MCM, Henze M, Lind M, Jørgensen SB, Environ. Model. Softw., 19, 763 (2004)
Nuhoglu A, Keskinler B, Yildiz E, Process Biochem., 40, 2467 (2005)
Ni BJ, Yu HQ, Appl. Microbiol. Biotechnol., 77(3), 723 (2007)
Siegrist H, Rieger L, Koch G, Kuhni M, Gujer W, Water Sci. Technol., 45, 61 (2002)
Pai TY, Process Biochem., 42, 978 (2007)
Makinia J, Swinarski M, Dobiegala E, Water Sci. Technol., 45, 209 (2002)
Makinia J, Rosenwinkel KH, Spering V, Water Res., 39, 1489 (2005)
van Veldhuizen HM, van Loosdrecht MCM, Heijnen JJ, Water Res., 33, 3459 (1999)
Cho MH, Lee J, Kim JH, Lim HC, Korean J. Chem. Eng., 27(3), 925 (2010)
Lee SH, Ko JH, Park JB, Im JH, Kim JR, Lee JJ, Kim CW, Korean J. Chem. Eng., 23(2), 203 (2006)
Zhang B, Gao TY, Chin. Water and Wastewater., 16, 11 (2000)
Fu G, Dong B, Zhou ZY, Gao TY, Chin. Water and Wastewater., 20, 53 (2004)
Kuba T, Wachtmeister A, van Loosdrecht MCM, Heijnen JJ, Water Sci. Technol., 30, 263 (1994)
Kuba T, van Loosdrecht MCM, Brandse FA, Heijnen JJ, Water Res., 31, 777 (1997)
Beccari M, Dionisi D, Giuliani A, Majone M, Ramadori R, Water Sci. Technol., 45, 157 (2002)
Zhou Z, Wu ZC, Wang ZW, Tang SJ, Gu GW, J. Chem. Technol. Biotechnol., 83(12), 1596 (2008)
Chinese NEPA, Water and wastewater monitoring methods, Chinese Environmental Science Publishing House, Beijing (1997)
Roeleveld PJ, van Loosdrecht MCM, Water Sci. Technol., 45, 77 (2002)
Ginestet P, Maisonnier A, Sperandio M, Water Sci. Technol., 45, 89 (2002)
Hulsbeek JJW, Kruit J, Roeleveld PJ, van Loosdrecht MCM, Water Sci. Technol., 45, 127 (2002)
Sin G, van Hulle SWH, De Pauw DJW, van Griensven A, Vanrolleghem PA, Water Res., 39, 2459 (2005)
Park SK, Lee MW, Lee DS, Park JM, Stud. Surf. Sci. Catal., 159, 401 (2006)
Filipe CDM, Daigger GT, Grady CPL, Water Environ. Res., 73, 213 (2001)
Zhang T, Liu Y, Fang HHP, Biotechnol. Bioeng., 92(2), 173 (2005)
Takacs I, Patry GG, Nolasco D, Water Res., 25, 1263 (1991)
Copp JB, The COST simulation benchmark: Description and simulator manual, Office for Official Publication of the European Community, Luxembourg (2002)
Zhou Z, Wu Z, Gu G, Wang Z, Asia Pac. J. Chem. Eng., Article in press.
Kuba T, van Loosdrecht MCM, Heijnen JJ, Water Res., 30, 1702 (1996)
Insel G, Sin G, Lee DS, Nopens I, Vanrolleghem PA, J. Chem. Technol. Biotechnol., 81(4), 679 (2006)
Brdjanovic D, van Loosdrecht MCM, Versteeg P, Hooijmans CM, Alaerts GJ, Heijnen JJ, Water Res., 34, 846 (2000)
Panswad T, Doungchai A, Anotai J, Water Res., 37, 409 (2003)
Rieger L, Koch G, Kuhni M, Gujer W, Siegrist H, Water Res., 35, 3887 (2001)