Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 23, 2010
Accepted November 25, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Predicting the vapor-liquid equilibrium of carbon dioxide+alkanol systems by using an artificial neural network
School of Chemical, Petroleum and Gas Engineering, Semnan University, P. O. Box 35195-363, Semnan, Iran
Korean Journal of Chemical Engineering, May 2011, 28(5), 1286-1292(7), 10.1007/s11814-010-0492-0
Download PDF
Abstract
A multi-layer feed-forward artificial neural network has been presented for accurate prediction of the vapor liquid equilibrium (VLE) of CO2+alkanol mixtures. Different types of alkanols namely, 1-propaol, 2-propanol, 1-butanol, 1-pentanol, 2-pentanol, 1-hexanol and 1-heptanol, are used in this study. The proposed network is trained using the Levenberg-Marquardt back propagation algorithm, and the tan-sigmoid activation function is applied to calculate the output values of the neurons of the hidden layers. According to the network's training, validation and testing results,_x000D_
a six layer neural network is selected as the best architecture. The presented model is very accurate over wide ranges of experimental pressure and temperatures. Comparison of the suggested neural network model with the most important thermodynamic correlations shows that the proposed neuromorphic model outperforms the other available alternatives. The predicted equilibrium pressure and vapor phase CO2 mole fraction are in good agreement with experimental data suggesting the accuracy of the proposed neural network model for process design.
References
Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121 (2004)
Joung SN, Yoo CW, Shin HY, Kim SY, Yoo KP, Lee CS, Huh WS, Fluid Phase Equilib., 185(1-2), 219 (2001)
CRC Handbook of Chemistry and Physics, 89th Ed., CRC Publishing, USA (2008)
Orbey H, Sandler SI, Modeling vapor-liquid equilibria: Cubic equations of state and their mixing rules, Cambridge Univ. Press, Cambridge (1998)
Castier M, Galicia-Luna LA, Sandler SI, Braz. J. Chem. Eng., 21 (2004)
Elizalde-Solis O, Galicia-Luna LA, Sandler SI, Sampayo-Hernandez JG, Fluid Phase Equilib., 210(2), 215 (2003)
Peng DY, Robinson DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Wong DSH, Sandler SI, AIChE J., 38, 671 (1992)
Secuianu C, Feroiu V, Geana D, Fluid Phase Equilib., 261(1-2), 337 (2007)
Secuianu C, Feroiu V, Geana D, Fluid Phase Equilib., 270(1-2), 109 (2008)
Soave G, Chem. Eng. Sci., 27, 1197 (1972)
Huron M, Vidal J, Fluid Phase Equilib., 3, 255 (1979)
Wisniewska-Goclowska B, Malanowski SK, Fluid Phase Equilib., 180(1-2), 103 (2001)
Lee HS, Lee H, Fluid Phase Equilib., 695, 150 (1998)
Silva-Oliver G, Galicia-Luna LA, Sandler SI, Fluid Phase Equilib., 200(1), 161 (2002)
Elizalde-Solis O, Galicia-Luna LA, Camacho-Camacho LE, Fluid Phase Equilib., 259(1), 23 (2007)
Alvarez VH, Larico R, Ianos Y, Aznar M, Braz. J. Chem. Eng., 25 (2008)
Guimaraes PR, Mcgreavy C, Comput. Chem. Eng., 19(S), 741 (1995)
Graupe D, Principles of Artificial Neural Networks, 2nd Ed., WSPC, USA (2007)
Benardos PG, Vosniakos GC, Engineering Applications of Artificial Intelligence., 20, 365 (2007)
Patel NC, Teja AS, Chem. Eng. Sci., 37, 463 (1982)
Joung SN, Yoo CW, Shin HY, Kim SY, Yoo KP, Lee CS, Huh WS, Fluid Phase Equilib., 185(1-2), 219 (2001)
CRC Handbook of Chemistry and Physics, 89th Ed., CRC Publishing, USA (2008)
Orbey H, Sandler SI, Modeling vapor-liquid equilibria: Cubic equations of state and their mixing rules, Cambridge Univ. Press, Cambridge (1998)
Castier M, Galicia-Luna LA, Sandler SI, Braz. J. Chem. Eng., 21 (2004)
Elizalde-Solis O, Galicia-Luna LA, Sandler SI, Sampayo-Hernandez JG, Fluid Phase Equilib., 210(2), 215 (2003)
Peng DY, Robinson DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Wong DSH, Sandler SI, AIChE J., 38, 671 (1992)
Secuianu C, Feroiu V, Geana D, Fluid Phase Equilib., 261(1-2), 337 (2007)
Secuianu C, Feroiu V, Geana D, Fluid Phase Equilib., 270(1-2), 109 (2008)
Soave G, Chem. Eng. Sci., 27, 1197 (1972)
Huron M, Vidal J, Fluid Phase Equilib., 3, 255 (1979)
Wisniewska-Goclowska B, Malanowski SK, Fluid Phase Equilib., 180(1-2), 103 (2001)
Lee HS, Lee H, Fluid Phase Equilib., 695, 150 (1998)
Silva-Oliver G, Galicia-Luna LA, Sandler SI, Fluid Phase Equilib., 200(1), 161 (2002)
Elizalde-Solis O, Galicia-Luna LA, Camacho-Camacho LE, Fluid Phase Equilib., 259(1), 23 (2007)
Alvarez VH, Larico R, Ianos Y, Aznar M, Braz. J. Chem. Eng., 25 (2008)
Guimaraes PR, Mcgreavy C, Comput. Chem. Eng., 19(S), 741 (1995)
Graupe D, Principles of Artificial Neural Networks, 2nd Ed., WSPC, USA (2007)
Benardos PG, Vosniakos GC, Engineering Applications of Artificial Intelligence., 20, 365 (2007)
Patel NC, Teja AS, Chem. Eng. Sci., 37, 463 (1982)