Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 21, 2010
Accepted November 26, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A crossover multi-fluid nonrandom lattice fluid model for pure hydrocarbons and carbon dioxide near to and far from the critical region
Department of Dermatological Health Management, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713, Korea
msshin@eulji.ac.kr
Korean Journal of Chemical Engineering, May 2011, 28(5), 1293-1298(6), 10.1007/s11814-010-0494-y
Download PDF
Abstract
The multi-fluid nonrandom lattice fluid model with the local composition concept is capable of describing thermodynamic properties for complex systems, but this model cannot represent the singular behavior of fluids near the critical region. In this research, the multi-fluid nonrandom lattice fluid model for pure fluids is combined with a crossover theory to obtain a crossover multi-fluid nonrandom lattice fluid model which incorporates the critical scaling laws valid asymptotically close to the critical point and reduces to the original classical multi-fluid nonrandom model far from the critical point. The crossover multi-fluid nonrandom lattice fluid model shows a great improvement in prediction of the thermodynamic properties of pure compounds near the critical region.
References
Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976)
Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2368 (1976)
Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 469 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 476 (2006)
Anisimov MA, Povodyrev AA, Sengers JV, Fluid Phase Equilib., 158, 537 (1999)
Kiselev SB, Friend DG, Fluid Phase Equilib., 162(1-2), 51 (1999)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38, 4993 (1993)
Lee Y, Shin MS, Yeo JK, Kim H, J. Chem. Thermodyn., 39(9), 1257 (2007)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174 (2008)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(4), 688 (2008)
Lee Y, Shin MS, Ha B, Kim H, J. Chem. Thermodyn., 40(5), 741 (2008)
Lee Y, Shin MS, Kim H, J. Chem. Thermodyn., 40(11), 1580 (2008)
Lee Y, Shin MS, Kim H, J. Chem. Phys., 129, 203503 (2008)
Shin MS, Korean J. Chem. Eng., 27(4), 1286 (2010)
Yoo KP, Shin HY, Lee CS, Bull. Korean Chem. Soc., 18, 841 (1997)
Yoo KP, Shin HY, Lee CS, Bull. Korean Chem. Soc., 18, 965 (1997)
Yoo KP, Shin HY, Hwang SY, Lee CS, Fluid Phase Equilib., 150, 191 (1998)
Shin HY, Yoo KP, Lee CS, Tamura K, Arai Y, Korean J. Chem. Eng., 15(1), 15 (1998)
Oh BC, Shin HY, Kim H, Korean J. Chem. Eng., 20(5), 911 (2003)
Shin HY, Haruki M, Yoo KP, Iwai Y, Arai Y, Fluid Phase Equilib., 189(1-2), 49 (2001)
Shin MS, Kim H, Fluid Phase Equilib., 253(1), 29 (2007)
Jang SH, Shin MS, Kim HY, Korean J. Chem. Eng., 26(1), 225 (2009)
Panayiotou C, Vera JH, Polymer J., 14, 681 (1982)
Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532 (1987)
Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
Kiselev SB, Ely JF, Fluid Phase Equilib., 119, 8645 (2003)
Anisimov MA, Kiselev SB, Sengers JV, Tang S, Physica A., 188, 487 (1992)
Kang J, Yoo K, Kim H, Lee J, Yang D, Lee C, Int. J. Thermophys., 22, 487 (2001)
Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2368 (1976)
Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 469 (2006)
Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 476 (2006)
Anisimov MA, Povodyrev AA, Sengers JV, Fluid Phase Equilib., 158, 537 (1999)
Kiselev SB, Friend DG, Fluid Phase Equilib., 162(1-2), 51 (1999)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38, 4993 (1993)
Lee Y, Shin MS, Yeo JK, Kim H, J. Chem. Thermodyn., 39(9), 1257 (2007)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174 (2008)
Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(4), 688 (2008)
Lee Y, Shin MS, Ha B, Kim H, J. Chem. Thermodyn., 40(5), 741 (2008)
Lee Y, Shin MS, Kim H, J. Chem. Thermodyn., 40(11), 1580 (2008)
Lee Y, Shin MS, Kim H, J. Chem. Phys., 129, 203503 (2008)
Shin MS, Korean J. Chem. Eng., 27(4), 1286 (2010)
Yoo KP, Shin HY, Lee CS, Bull. Korean Chem. Soc., 18, 841 (1997)
Yoo KP, Shin HY, Lee CS, Bull. Korean Chem. Soc., 18, 965 (1997)
Yoo KP, Shin HY, Hwang SY, Lee CS, Fluid Phase Equilib., 150, 191 (1998)
Shin HY, Yoo KP, Lee CS, Tamura K, Arai Y, Korean J. Chem. Eng., 15(1), 15 (1998)
Oh BC, Shin HY, Kim H, Korean J. Chem. Eng., 20(5), 911 (2003)
Shin HY, Haruki M, Yoo KP, Iwai Y, Arai Y, Fluid Phase Equilib., 189(1-2), 49 (2001)
Shin MS, Kim H, Fluid Phase Equilib., 253(1), 29 (2007)
Jang SH, Shin MS, Kim HY, Korean J. Chem. Eng., 26(1), 225 (2009)
Panayiotou C, Vera JH, Polymer J., 14, 681 (1982)
Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532 (1987)
Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115 (2000)
Kiselev SB, Ely JF, Fluid Phase Equilib., 119, 8645 (2003)
Anisimov MA, Kiselev SB, Sengers JV, Tang S, Physica A., 188, 487 (1992)
Kang J, Yoo K, Kim H, Lee J, Yang D, Lee C, Int. J. Thermophys., 22, 487 (2001)