Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 21, 2010
Accepted November 30, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Aggregation mechanism of bovine serum albumin based on collision factor by the population balance conservation law
1Department of Chemical Engineering, Amirkabir University of Technology, Box (15875-4413), 424, Hafez Ave., Tehran, Iran 2Energy Research Center, Amirkabir University of Technology, Box (15875-4413), 424, Hafez Ave., Tehran, Iran
drbdabir@aut.ac.ir
Korean Journal of Chemical Engineering, May 2011, 28(5), 1304-1310(7), 10.1007/s11814-010-0496-9
Download PDF
Abstract
This paper discusses a novel approach for exploring the aggregation mechanism of bovine serum albumin using collision factor. The population balance equation consisting of aggregation term was developed and solved by the moment method. Different experiments were implemented to account for effective parameters on protein aggregation and to measure variations in average size of aggregates formed in a time interval. This was done by taking pictures with a CCD camera on a sterio microscope. The pictures were exported to image processing software to analyze average number and size of aggregates. The collision factor appearing in population balance equation was optimized and declared as a global term.
References
Wada R, Kitabatake YN, Effects of heating at neutral and acid pH on the structure of [beta]-lactoglobulin A revealed by differential scanning calorimetry and circular dichroism spectroscopy, Biochim. Biophys. Acta (BBA) - General Subjects, 1760,841 (2006)
Ye H, Anal. Biochem., 356, 76 (2006)
Militello V, Vetri V, Leone M, Biophys. Chem., 105, 133 (2003)
Arnebrant T, Barton K, Nylander T, J. Colloid Interface Sci., 119, 383 (1987)
Veerman C, Sagis LMC, Heck J, van der Linden E, Int. J. Biol. Macromol., 31, 139 (2003)
Xu TW, Fu RQ, Yan LF, J. Colloid Interface Sci., 262(2), 342 (2003)
Meersman F, Smeller L, Heremans K, Biophys. J., 82, 2635 (2002)
Nakanishi K, Sakiyama T, Imamura K, J. Biosci. Bioeng., 91(3), 233 (2001)
Fitzsimons SM, Mulvihill DM, Morris ER, Food Hydrocolloids., 21, 638 (2007)
Yamamoto S, Ishihara T, Sep. Sci. Technol., 35(11), 1707 (2000)
Su R, Qi W, He Z, Zhang Y, Jin F, Food Hydrocolloids., 22, 995 (2008)
Doraiswwami R, Population balance theory and application to particulate systems in engineering, 1st Ed. United States, Academic Press (2000)
Ramkrishna D, Mahoney AW, Chem. Eng. Sci., 57(4), 595 (2002)
Qamar S, Warnecke G, Chem. Eng. Sci., 62(3), 679 (2007)
Pilinis C, Atmos. Environ., Part A., 24, 1923 (1990)
Mantzaris NV, Daoutidis P, Srienc F, Comput. Chem. Eng., 25(11-12), 1463 (2001)
Obrigkeit DD, Resch TJ, McRae GJ, Ind. Eng. Chem. Res., 43(15), 4394 (2004)
Kim YP, Seinfeld JH, J. Colloid Interface Sci., 149, 425 (1992)
Gelbard FM, Seinfeld JH, J. Colloid Interface Sci., 63, 472 (1978)
Attarakih MM, Bart H, Faqir NM, The bivariate spatially distributed population balance equation: An accurate reduction technique, in Computer Aided Chemical Engineering, Puigjaner Luis and Espuna Antonio, Editors, 163 (2005)
Randolph A, Lasron M, Theory of particulate processes, United States, Academic press (1971)
Mo H, Tay KG, Ng HY, J. Membr. Sci., 315(1-2), 28 (2008)
Alexopoulos AH, Kiparissides C, Comput. Aided Chem. Eng., 20, 433 (2005)
Ye H, Anal. Biochem., 356, 76 (2006)
Militello V, Vetri V, Leone M, Biophys. Chem., 105, 133 (2003)
Arnebrant T, Barton K, Nylander T, J. Colloid Interface Sci., 119, 383 (1987)
Veerman C, Sagis LMC, Heck J, van der Linden E, Int. J. Biol. Macromol., 31, 139 (2003)
Xu TW, Fu RQ, Yan LF, J. Colloid Interface Sci., 262(2), 342 (2003)
Meersman F, Smeller L, Heremans K, Biophys. J., 82, 2635 (2002)
Nakanishi K, Sakiyama T, Imamura K, J. Biosci. Bioeng., 91(3), 233 (2001)
Fitzsimons SM, Mulvihill DM, Morris ER, Food Hydrocolloids., 21, 638 (2007)
Yamamoto S, Ishihara T, Sep. Sci. Technol., 35(11), 1707 (2000)
Su R, Qi W, He Z, Zhang Y, Jin F, Food Hydrocolloids., 22, 995 (2008)
Doraiswwami R, Population balance theory and application to particulate systems in engineering, 1st Ed. United States, Academic Press (2000)
Ramkrishna D, Mahoney AW, Chem. Eng. Sci., 57(4), 595 (2002)
Qamar S, Warnecke G, Chem. Eng. Sci., 62(3), 679 (2007)
Pilinis C, Atmos. Environ., Part A., 24, 1923 (1990)
Mantzaris NV, Daoutidis P, Srienc F, Comput. Chem. Eng., 25(11-12), 1463 (2001)
Obrigkeit DD, Resch TJ, McRae GJ, Ind. Eng. Chem. Res., 43(15), 4394 (2004)
Kim YP, Seinfeld JH, J. Colloid Interface Sci., 149, 425 (1992)
Gelbard FM, Seinfeld JH, J. Colloid Interface Sci., 63, 472 (1978)
Attarakih MM, Bart H, Faqir NM, The bivariate spatially distributed population balance equation: An accurate reduction technique, in Computer Aided Chemical Engineering, Puigjaner Luis and Espuna Antonio, Editors, 163 (2005)
Randolph A, Lasron M, Theory of particulate processes, United States, Academic press (1971)
Mo H, Tay KG, Ng HY, J. Membr. Sci., 315(1-2), 28 (2008)
Alexopoulos AH, Kiparissides C, Comput. Aided Chem. Eng., 20, 433 (2005)