Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 23, 2010
Accepted December 27, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China 1Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
zpshi@jiangnan.edu.cn
Korean Journal of Chemical Engineering, June 2011, 28(6), 1412-1419(8), 10.1007/s11814-010-0527-6
Download PDF
Abstract
The performance of traditional heterologous protein production by Pichia pastoris with methanol induction at 30 ℃ is poor, characterized by low ATP regeneration rate and weak operation stability. A low temperature induction strategy at 20 ℃ was thus adopted for efficient porcine interferon-α production in a 10 L fermentor. With the strategy, maximal methanol tolerance level could reach about 40 g/L to effectively deal with methanol concentration variations, so that the complicated on-line methanol measurement system could be eliminated. Moreover, metabolic analysis based on multiple state-variables measurements indicated that pIFN-α antiviral activity enhancement profited from the formation of an efficient ATP regeneration system at 20 ℃induction. Compared to the induction strategy at 30 ℃, the proposed strategy increased the ATP regeneration rate by 49-66%, the maximal pIFN-α antiviral activity was enhanced about 20-fold and reached a higher level of 1.5×106 IU/mL.
References
Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45 (2000)
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast., 22, 249 (2005)
Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF, Vet. Microbiol., 108, 167 (2005)
Chinsangaram J, Moraes MP, Koster M, Grubman MJ, J. Virol., 77, 1621 (2003)
Cereghino GP, Cereghino JL, Ilgen C, Cregg JM, Curr. Opin. Biotechnol., 13, 329 (2002)
Zhang T, Gong F, Peng Y, Chi ZM, Process. Biochem., 44, 1335 (2009)
Khatri NK, Hoffmann F, Biotechnol. Bioeng., 93(5), 871 (2006)
Nakano A, Lee CY, Yoshida A, Matsumoto T, Shiomi N, Katoh S, J. Biosci. Bioeng., 101(3), 227 (2006)
Hang HF, Chen W, Guo MJ, Chu J, Zhuang YP, Zhang S, Korean J. Chem. Eng., 25(5), 1065 (2008)
Mayson BE, Kilburn DG, Zamost BL, Raymond CK, Lesnicki GJ, Biotechnol. Bioeng., 81(3), 291 (2003)
Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO, Bioprocess Biosyst. Eng., 24, 385 (2002)
Yu RS, Dong SJ, Zhu YM, Jin H, Gao MJ, Duan ZY, Bioprocess Biosyst. Eng., 33, 473 (2010)
Wang Y, Wang ZH, Xu QL, Du GC, Hua ZZ, Liu LM, Li JH, Chen J, Process. Biochem., 44, 949 (2009)
Lee CY, Lee SJ, Jung KH, Katoh S, Lee EK, Process Biochem., 38, 1147 (2003)
Jungo C, Marison I, von Stockar U, J. Biotechnol., 130, 236 (2007)
Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D, J. Proteome Res., 8, 1380 (2009)
Zhao HL, Xue C, Wang Y, Yao XQ, Liu ZM, Appl. Microbiol. Biotechnol., 81(2), 235 (2008)
Jahic M, Wallberg F, Bollok M, Garcia P, Enfors SO, Microb. Cell Fact., 2, 6 (2003)
Zhang JG, Wang XD, Zhang JN, Wei DZ, J. Biosci. Bioeng., 105(4), 335 (2008)
Woo SH, Park SH, Lim HK, Jung KH, J. Ind. Microbiol.Biotechnol., 32, 474 (2005)
Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V, Appl. Biochem. Biotechnol., 142(2), 105 (2007)
Suye S, Ogawa A, Yokoyama S, Obayashi A, Agric. Biol. Chem., 54, 1297 (1990)
Duan SB, Shi ZP, Feng HJ, Duan ZY, Mao ZG, Biochem. Eng. J., 30, 88 (2006)
Jin H, Zheng ZY, Gao MJ, Duan ZY, Shi ZP, Wang ZX, Jin J, Biochem. Eng. J., 37, 26 (2007)
Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO, Bioprocess Biosyst. Eng., 27, 399 (2005)
Schroer K, Peter Luef K, Hartner FS, Glieder A, Pscheidt B, Metab. Eng., 12, 8 (2010)
van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M, Biochim. Biophys. Acta., 12, 1453 (2006)
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast., 22, 249 (2005)
Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF, Vet. Microbiol., 108, 167 (2005)
Chinsangaram J, Moraes MP, Koster M, Grubman MJ, J. Virol., 77, 1621 (2003)
Cereghino GP, Cereghino JL, Ilgen C, Cregg JM, Curr. Opin. Biotechnol., 13, 329 (2002)
Zhang T, Gong F, Peng Y, Chi ZM, Process. Biochem., 44, 1335 (2009)
Khatri NK, Hoffmann F, Biotechnol. Bioeng., 93(5), 871 (2006)
Nakano A, Lee CY, Yoshida A, Matsumoto T, Shiomi N, Katoh S, J. Biosci. Bioeng., 101(3), 227 (2006)
Hang HF, Chen W, Guo MJ, Chu J, Zhuang YP, Zhang S, Korean J. Chem. Eng., 25(5), 1065 (2008)
Mayson BE, Kilburn DG, Zamost BL, Raymond CK, Lesnicki GJ, Biotechnol. Bioeng., 81(3), 291 (2003)
Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO, Bioprocess Biosyst. Eng., 24, 385 (2002)
Yu RS, Dong SJ, Zhu YM, Jin H, Gao MJ, Duan ZY, Bioprocess Biosyst. Eng., 33, 473 (2010)
Wang Y, Wang ZH, Xu QL, Du GC, Hua ZZ, Liu LM, Li JH, Chen J, Process. Biochem., 44, 949 (2009)
Lee CY, Lee SJ, Jung KH, Katoh S, Lee EK, Process Biochem., 38, 1147 (2003)
Jungo C, Marison I, von Stockar U, J. Biotechnol., 130, 236 (2007)
Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D, J. Proteome Res., 8, 1380 (2009)
Zhao HL, Xue C, Wang Y, Yao XQ, Liu ZM, Appl. Microbiol. Biotechnol., 81(2), 235 (2008)
Jahic M, Wallberg F, Bollok M, Garcia P, Enfors SO, Microb. Cell Fact., 2, 6 (2003)
Zhang JG, Wang XD, Zhang JN, Wei DZ, J. Biosci. Bioeng., 105(4), 335 (2008)
Woo SH, Park SH, Lim HK, Jung KH, J. Ind. Microbiol.Biotechnol., 32, 474 (2005)
Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V, Appl. Biochem. Biotechnol., 142(2), 105 (2007)
Suye S, Ogawa A, Yokoyama S, Obayashi A, Agric. Biol. Chem., 54, 1297 (1990)
Duan SB, Shi ZP, Feng HJ, Duan ZY, Mao ZG, Biochem. Eng. J., 30, 88 (2006)
Jin H, Zheng ZY, Gao MJ, Duan ZY, Shi ZP, Wang ZX, Jin J, Biochem. Eng. J., 37, 26 (2007)
Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO, Bioprocess Biosyst. Eng., 27, 399 (2005)
Schroer K, Peter Luef K, Hartner FS, Glieder A, Pscheidt B, Metab. Eng., 12, 8 (2010)
van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M, Biochim. Biophys. Acta., 12, 1453 (2006)