ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 18, 2010
Accepted December 8, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Biosorption of mercury(II) ions from aqueous solution by garlic (Allium sativum L.) powder

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea 1Korea Environmental Industry & Technology Institute (KEITI), 613-2 Bulgwang-dong, Eunpyeong-gu, Seoul 122-706, Korea
Korean Journal of Chemical Engineering, June 2011, 28(6), 1439-1443(5), 10.1007/s11814-010-0514-y
downloadDownload PDF

Abstract

A biosorbent was prepared by drying garlic (Allium sativum L.) under vacuum and tested in its powder form for its mercury adsorption capability in aqueous solution. Results show that garlic powder has a good adsorption capacity for mercury and that the mercury concentration of the solution has a significant impact on the adsorption capacity of the biosorbent. The Langmuir and Freundlich adsorption isotherms were also constructed. The adsorption capacity, qmax, adsorption efficiency, b, and correclation confficient, r2 for the Langmuir model were 0.6497, 0.4903, and 0.9980, respectively. For the Freundlich model, the model parameters, KF, 1/n, and r2 for mercury were 4.1879, 0.3467, and 0.9518, respectively. Langmuir adsorption isotherm was better suited for the adsorption of mercury onto garlic powder, and that the maximum amount of mercury adsorbed (qmax) was 0.6497 mg/g.

References

Kansenen PH, Venetvaara J, Water Air Soil Pollut., 60, 337 (1991)
Gavrilescu M, Eng. Life. Sci., 4, 219 (2004)
Peternele WS, Winkler-Hechenleitner AA, Pineda EAG, Bioresour. Technol., 68(1), 95 (1999)
Turun I, Bayramoglu G, Yalcin E, Basaran G, Celik G, Arica MY, J. Environ. Manage., 77, 85 (2005)
Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY, Int. J. Miner. Process., 81, 35 (2006)
Saxena S, Prasad M, D'Souza SF, Ind. Eng. Chem. Res., 45(26), 9122 (2006)
Hilal N, Al-Abri M, Moran A, Al-Hinai H, Desalination, 220(1-3), 85 (2008)
Mao J, Won SW, Vijayaraghavan K, Yun YS, Bioresour. Technol., 100, 1463 (2009)
Won SW, Mao J, Kwak IS, Sathishkumar M, Yun YS, Bioresour. Technol., 101, 1135 (2010)
Meharg AA, Plant Cell Environ., 17, 989 (1994)
Jiang WS, Liu DH, Hou WQ, Bioresour. Technol., 76(1), 9 (2001)
Fiskesjo G, Mutat. Res., 197, 243 (1988)
Skinner K, Wright N, Porter-Goff E, Environ. Pollut., 145, 234 (2007)
Feng QG, Lin QY, Gong FZ, Sugita S, Shoya M, J. Colloid Interface Sci., 278(1), 1 (2004)
Du X, Zhu YG, Liu WJ, Zhao XS, Environ. Exper. Botany., 54, 1 (2005)
Greger M, Wang Y, Neuschutz C, Environ. Pollut., 134, 201 (2005)
Ersoz M, Advan. Coll. Inter. Sci., 134, 96 (2007)
Papandreou A, Stournaras CJ, Panias D, J. Hazard. Mater., 148(3), 538 (2007)
Eom Y, Erkhembayar B, Lee TG, in 36th KSIEC Meeting, Anseong, Korea (2007)
Saeed A, Iqbal M, Akhtar MW, J. Hazard. Mater., B117, 65 (2005)
Krishnani KK, Meng XG, Christodoulatos C, Boddu VM, J. Hazard. Mater., 153(3), 1222 (2008)
Sangi MR, Shahmoradi A, Zolgharnein J, Azimi GH, Ghorbandoost M, J. Hazard. Mater., 155(3), 513 (2008)
Inbaraj BS, Wang JS, Lu JF, Siao FY, Chen BH, Bioresour. Technol., 100, 200 (2009)
Bel’chinskaya LI, Tkacheva OA, Russian J. Appl. Chem., 77, 756 (2004)
Smolinska B, Cedzynska K, Chemosphere., 69, 1388 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로