Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 28, 2010
Accepted December 8, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simultaneous absorption of carbon dioxide, sulfur dioxide and nitrogen dioxide into aqueous 2-amino-2-methy-1-propanol
School of Civil and Environmental Engineering, Pusan National University, Busan 609-735, Korea 1Department of Environmental Administration, Catholic University of Pusan, Busan 609-757, Korea 2School of Chemical and Biomolecular Engineering, Pusan National University, Busan 609-735, Korea
swpark@pusan.ac.kr
Korean Journal of Chemical Engineering, June 2011, 28(6), 1444-1450(7), 10.1007/s11814-010-0513-z
Download PDF
Abstract
The absorption mechanism of three acidic gases in alkali solution, such as the system of carbon dioxide, sulfur dioxide, and nitrogen dioxide in 2-amino-2-methyl-1-propanol (AMP), was used to predict the simultaneous absorption rates using the film theory. Diffusivity, Henry constant and mass transfer coefficient of each gas were used to obtain the theoretical enhancement factor of each component. The theoretical molar fluxe of each gas was obtained by an approximate solution of mass balances with reaction regions of the first order reaction of CO2 and instantaneous reactions of SO2 and NO2 in CO2-SO2-NO2-AMP system. From the comparison between the theoretical total fluxes of these gases and the measured ones, the solubility and the reaction rate between each gas and AMP influenced its molar flux.
Keywords
References
Astarita G, Savage DW, Bisio A, Gas treating with chemical solvents, John Wiley & Sons, New York (1983)
Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
da Silva EF, Svendsen HF, Ind. Eng. Chem. Res., 43(13), 3413 (2004)
Mimura T, Suda T, Iwaki I, Honda A, Kumazawa H, Chem. Eng. Commun., 170, 245 (1998)
Brogren C, Karlsson HT, Chem. Eng. Sci., 52(18), 3085 (1997)
Stein J, Kind M, Schlunder EU, Chem. Eng. J., 86(1-2), 17 (2002)
Jung SH, Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 24(6), 1064 (2007)
Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM, Chem. Eng. Sci., 58(16), 3589 (2003)
Colle S, Vanderschuren J, Thomas D, Chem. Eng. Process., 43(11), 1397 (2004)
Xia JZ, Rumpf B, Maurer G, Ind. Eng. Chem. Res., 38(3), 1149 (1999)
Vandam MH, Lamine AS, Roizard D, Lochon P, Roizard C, Ind. Eng. Chem. Res., 36(11), 4628 (1997)
Nagel D, de Kermadec R, Lintz HG, Roizard C, Lapicque F, Chem. Eng. Sci., 57(22-23), 4883 (2002)
Danckwerts PV, Gas-Liquid Reactions, McGraw-Hill, New York (1970)
Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 4, 31 (1972)
Ho MP, Klinzing GE, Can. J. Chem. Eng., 64, 243 (1986)
Sada E, Kumazawa H, Yoshikawa Y, J. Am. Chem. Soc., 34, 1215 (1988)
Kenig EY, Schneider R, Gorak A, Chem. Eng. Sci., 54(21), 5195 (1999)
Goetter LA, Pigford RL, J. Am. Chem. Soc., 17, 793 (1971)
Hikita H, Asai S, Ishikawa H, Chem. Eng., J., 18, 169 (1979)
Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543 (2009)
Hwang KS, Han L, Park DW, Oh KJ, Park SW, Sep. Sci. Technol., in review (2010)
Hikita H, Asai A, Tsufi T, J. Am. Chem. Soc., 23, 538 (1977)
Denbigh KG, Prince AJ, J. Am. Chem. Soc., 69, 790 (1947)
Gray P, Yoffe AD, Chem. Rev., 55, 1069 (1955)
Carberry JJ, Chem. Eng. Sci., 9, 189 (1959)
Caudle PG, Denbigh KG, Trans. Faraday, Soc., 49, 39 (1959)
Wendel MM, Pigford RL, J. Am. Chem. Soc., 4, 249 (1958)
Daraiswany LK, Sharma MM, Heterogeneous reaction: Analysis, example and reactor design, John Wiley Sons, New York (1984)
Yu W, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585 (1985)
Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543 (2009)
Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data., 33, 29 (1988)
Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data., 38, 78 (1993)
Pasiuk-Bronikowska W, Rudzinski KJ, Chem. Eng. Sci., 46, 2281 (1991)
Shadid FT, Handley D, Chem. Eng. Res. Dev., 67, 185 (1989)
Cussler EL, Diffusion, Cambridge University Press, New York (1984)
Carta G, Pigford RL, Ind. Eng. Chem. Fundam., 22, 329 (1983)
Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
da Silva EF, Svendsen HF, Ind. Eng. Chem. Res., 43(13), 3413 (2004)
Mimura T, Suda T, Iwaki I, Honda A, Kumazawa H, Chem. Eng. Commun., 170, 245 (1998)
Brogren C, Karlsson HT, Chem. Eng. Sci., 52(18), 3085 (1997)
Stein J, Kind M, Schlunder EU, Chem. Eng. J., 86(1-2), 17 (2002)
Jung SH, Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 24(6), 1064 (2007)
Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM, Chem. Eng. Sci., 58(16), 3589 (2003)
Colle S, Vanderschuren J, Thomas D, Chem. Eng. Process., 43(11), 1397 (2004)
Xia JZ, Rumpf B, Maurer G, Ind. Eng. Chem. Res., 38(3), 1149 (1999)
Vandam MH, Lamine AS, Roizard D, Lochon P, Roizard C, Ind. Eng. Chem. Res., 36(11), 4628 (1997)
Nagel D, de Kermadec R, Lintz HG, Roizard C, Lapicque F, Chem. Eng. Sci., 57(22-23), 4883 (2002)
Danckwerts PV, Gas-Liquid Reactions, McGraw-Hill, New York (1970)
Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 4, 31 (1972)
Ho MP, Klinzing GE, Can. J. Chem. Eng., 64, 243 (1986)
Sada E, Kumazawa H, Yoshikawa Y, J. Am. Chem. Soc., 34, 1215 (1988)
Kenig EY, Schneider R, Gorak A, Chem. Eng. Sci., 54(21), 5195 (1999)
Goetter LA, Pigford RL, J. Am. Chem. Soc., 17, 793 (1971)
Hikita H, Asai S, Ishikawa H, Chem. Eng., J., 18, 169 (1979)
Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543 (2009)
Hwang KS, Han L, Park DW, Oh KJ, Park SW, Sep. Sci. Technol., in review (2010)
Hikita H, Asai A, Tsufi T, J. Am. Chem. Soc., 23, 538 (1977)
Denbigh KG, Prince AJ, J. Am. Chem. Soc., 69, 790 (1947)
Gray P, Yoffe AD, Chem. Rev., 55, 1069 (1955)
Carberry JJ, Chem. Eng. Sci., 9, 189 (1959)
Caudle PG, Denbigh KG, Trans. Faraday, Soc., 49, 39 (1959)
Wendel MM, Pigford RL, J. Am. Chem. Soc., 4, 249 (1958)
Daraiswany LK, Sharma MM, Heterogeneous reaction: Analysis, example and reactor design, John Wiley Sons, New York (1984)
Yu W, Astarita G, Savage DW, Chem. Eng. Sci., 40, 1585 (1985)
Park SW, Park DW, Oh KJ, Kim SS, Sep. Sci. Technol., 44(3), 543 (2009)
Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data., 33, 29 (1988)
Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data., 38, 78 (1993)
Pasiuk-Bronikowska W, Rudzinski KJ, Chem. Eng. Sci., 46, 2281 (1991)
Shadid FT, Handley D, Chem. Eng. Res. Dev., 67, 185 (1989)
Cussler EL, Diffusion, Cambridge University Press, New York (1984)
Carta G, Pigford RL, Ind. Eng. Chem. Fundam., 22, 329 (1983)