ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 7, 2010
Accepted January 16, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of water content of organic solvent on microwave-assisted extraction efficiency of paclitaxel from plant cell culture

Department of Chemical Engineering, Kongju National University, Cheonan, Chungnam 330-717, Korea
Korean Journal of Chemical Engineering, July 2011, 28(7), 1561-1565(5), 10.1007/s11814-011-0012-x
downloadDownload PDF

Abstract

A microwave-assisted extraction (MAE) method was used to recover the anticancer agent paclitaxel from plant cell cultures, and the extraction efficiency of the paclitaxel was determined using various organic solvents (acetone, chloroform, ethanol, methanol, and methylene chloride) and solvent concentrations. Methanol provided the highest recovery of paclitaxel (~93%) and resulted in the most severe rupturing of the biomass surface during MAE. Most of the paclitaxel (>99%) was recovered using a methanol concentration of 90% (water content: 10%), suggesting that the addition of a small amount of water improves the efficiency of MAE. Furthermore, analysis of the surface of the biomass using an electron microscope revealed that the higher the recovery of paclitaxel, the more severe the damage to the biomass surface. A comparison of the extraction efficiency between MAE and conventional solvent extraction (CSE) showed that with CSE, only up to 54% of the paclitaxel could be recovered in one extraction whereas with MAE, most of the paclitaxel (>99%) in the biomass could be recovered in one extraction.

References

Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT, J. Am. Chem. Soc., 93, 2325 (1971)
Schiff PB, Fant J, Horwitz SB, Nature., 277, 665 (1979)
Rowinsky EK, Cazenave LA, Donehower RC, J. Natl. Cancer Inst., 82, 1247 (1990)
Kim JH, Korean J. Biotechnol. Bioeng., 21, 1 (2006)
Jeon KY, Kim JH, Korean J. Biotechnol. Bioeng., 23, 557 (2008)
Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281 (2008)
Rao KV, Hanuman JB, Alvarez C, Stoy M, Juchum J, Davies RM, Baxley R, Pharm. Res., 12, 1003 (1995)
Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068 (1999)
Choi HK, Park YS, Son JS, Hong SS, Song JY, Na GH, Kor. J. Plant Biotechnol., 29, 59 (2002)
Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337 (2000)
Kim JH, Hong SS, Korean J. Biotechnol. Bioeng., 15, 346 (2000)
Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679 (2002)
Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39, 1985 (2004)
Zhang B, Yang RY, Liu CZ, Sep. Purif. Technol., 62(2), 480 (2008)
Kim WK, Chae HJ, Kim JH, Biotechnol. Bioprocess. Eng., 15, 481 (2010)
Kwon JH, Choi YH, Chung HW, Lee GD, Int. J. Food Sci. Technol., 41, 67 (2005)
Fulzele DP, Satdive RK, J. Chromatogr. A., 1063, 9 (2005)
Lucchesi ME, Smadja J, Bradshaw S, Louw W, Chemat F, J. Food Eng., 79, 1079 (2007)
Youn YS, Ming YK, Yuan SC, Microchem. J., 74, 131 (2003)
Pan X, Liu H, Jia G, Youn YS, Biochem. Eng. J., 5, 173 (2000)
Pan XJ, Niu GG, Liu HZ, Chem. Eng. Process., 42(2), 129 (2003)
Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Hong SS, Lee HS, US Patent 5,871,979 (1999)
Hemwimon S, Pavasant P, Shotipruk A, Sep. Purif. Technol., 54(1), 44 (2007)
Zlotorzynski A, Crit. Rev. Anal. Chem., 25, 43 (1995)
Hao JY, Han W, Huang SD, Xue BY, Deng X, Sep. Purif. Technol., 28(3), 191 (2002)
Hong SS, Song BK, Kim JH, Lim CB, Lee HS, Kim KW, Kang IS, Park HB, US Patent, 5,900,979 (1999)
Xiao WH, Han LJ, Shi B, Sep. Purif. Technol., 62(3), 614 (2008)
Zhou HY, Liu CZ, J. Chromatogr. A., 1129, 135 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로