Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 9, 2010
Accepted January 16, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Application of statistical experimental design for optimization of downstream process for recovery of pullulan produced by Aureobasidium pullulans HP-2001
1Department of Medical Bioscience, Dong-A University, Busan 604-714, Korea 2BK21 Bio-Silver Project of Dong-A University, Busan 604-714, Korea 3Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea 4Korean Biosolution Co., Busan 612-020, Korea
jwlee@dau.ac.kr
Korean Journal of Chemical Engineering, July 2011, 28(7), 1580-1586(7), 10.1007/s11814-011-0011-y
Download PDF
Abstract
The optimal conditions of the downstream process for recovery of pullulan produced by Aureobasidium pullulans HP-2001 were examined using response surface method (RSM). The optimal amount of diatomite in filter press and the optimal flow rate in a continuous flow centrifuge for removal of cells from the culture broth of A. pullulans HP-2001 were found to be 5.0% (v/v) and 2.0 L/min. Based on central composite design (CCD) experiments and analysis of variance (ANOVA) indicated that the optimal conditions for recovery of pullulan from the supernatant by_x000D_
precipitation were the volume ratio of ethanol (or isopropanol) to supernatant of 3.0 : 1.0, the reaction time of 29.5 h, and the reaction temperature of 20.2 ℃. The expected maximal recovery yields of pullulan using ethanol and isopropanol under optimized conditions were 79.2 and 85.5%, respectively.
Keywords
References
Singh PS, Saini GK, Kennedy JF, Carbohydr. Polym., 73, 515 (2008)
Shingel KI, Carbohydr. Res., 339, 447 (2004)
Leathers TD, Appl. Microbiol. Biotechnol., 62(5-6), 468 (2003)
Song H, Lee SY, Enzym. Microb. Technol., 39, 352 (2009)
Seo HP, Chung CH, Kim SK, Gross RA, Kaplan DL, Lee JW, J. Microbiol. Biotechnol., 14, 237 (2004)
Seo HP, Jo KI, Son CW, Yang JK, Chung CH, Nam SW, Kim SK, Lee JW, J. Microbiol. Biotechnol., 16, 374 (2006)
Wu S, Jin Z, Kim JM, Tong Q, Chen H, Carbohydr. Polym., 77, 750 (2009)
Singh RS, Saini GK, Kennedy JF, Carbohydr. Polym., 78, 89 (2009)
Singh RS, Singh H, Saini GK, Appl. Biochem. Biotechnol., 152(1), 42 (2009)
Cui JD, Korean J. Chem. Eng., 27(1), 174 (2010)
Sen R, J. Chem. Technol. Biotechnol., 68(3), 263 (1997)
Miller GL, Anal. Chem., 31, 426 (1959)
Garcia-Ochoa F, Santos VE, Gasas JA, Gomez E, Biotechnol. Adv., 18, 549 (2000)
SlJjivi M, Smiciklas I, Pejanovi S, Plecas I, Appl. Clay Sci., 43, 33 (2009)
Osmanlioglu AE, Appl. Radiat. Isot., 65, 17 (2007)
Boychyn M, Yim SSS, Shamlou PA, Bulmer M, More J, Hoare A, Chem. Eng. Sci., 56(16), 4759 (2001)
Kachhawa DK, Bhattacharjee P, Singhal RS, Carbohydr. Polym., 52, 25 (2003)
Swales C, Wright S, Water Res., 34, 1962 (2000)
Higgins JA, Trout J, Fayer MR, Shelton D, Jenkins MC, Water Res., 37, 3551 (2003)
Akhnazarova S, Kefarov V, Experiment optimization in chemistry and chemical engineering, Moscow, Mir Publishers, 135 (1982)
Khuri AI, Cornell JA, Response surfaces: Design and analysis, New York, Marcel Dekker, 211 (1987)
Shinomiya K, Kabasawa Y, Toida T, Omaniari T, Ito Y, J. Chromatogr., 922, 365 (2001)
Pollock TJ, Thorne L, Armentrout RW, Appl. Environ. Microbiol., 58, 877 (1992)
Lazaridou A, Biliaderis CG, Roukas T, Izydorczyk M, Appl. Biochem. Biotechnol., 97(1), 1 (2002)
Singh PS, Saini GK, Kennedy JF, Carbohydr. Polym., 78, 89 (2008)
Hofmann R, Kappler T, Posten C, Sep. Purif. Technol., 51(3), 303 (2006)
Shingel KI, Carbohydr. Res., 339, 447 (2004)
Leathers TD, Appl. Microbiol. Biotechnol., 62(5-6), 468 (2003)
Song H, Lee SY, Enzym. Microb. Technol., 39, 352 (2009)
Seo HP, Chung CH, Kim SK, Gross RA, Kaplan DL, Lee JW, J. Microbiol. Biotechnol., 14, 237 (2004)
Seo HP, Jo KI, Son CW, Yang JK, Chung CH, Nam SW, Kim SK, Lee JW, J. Microbiol. Biotechnol., 16, 374 (2006)
Wu S, Jin Z, Kim JM, Tong Q, Chen H, Carbohydr. Polym., 77, 750 (2009)
Singh RS, Saini GK, Kennedy JF, Carbohydr. Polym., 78, 89 (2009)
Singh RS, Singh H, Saini GK, Appl. Biochem. Biotechnol., 152(1), 42 (2009)
Cui JD, Korean J. Chem. Eng., 27(1), 174 (2010)
Sen R, J. Chem. Technol. Biotechnol., 68(3), 263 (1997)
Miller GL, Anal. Chem., 31, 426 (1959)
Garcia-Ochoa F, Santos VE, Gasas JA, Gomez E, Biotechnol. Adv., 18, 549 (2000)
SlJjivi M, Smiciklas I, Pejanovi S, Plecas I, Appl. Clay Sci., 43, 33 (2009)
Osmanlioglu AE, Appl. Radiat. Isot., 65, 17 (2007)
Boychyn M, Yim SSS, Shamlou PA, Bulmer M, More J, Hoare A, Chem. Eng. Sci., 56(16), 4759 (2001)
Kachhawa DK, Bhattacharjee P, Singhal RS, Carbohydr. Polym., 52, 25 (2003)
Swales C, Wright S, Water Res., 34, 1962 (2000)
Higgins JA, Trout J, Fayer MR, Shelton D, Jenkins MC, Water Res., 37, 3551 (2003)
Akhnazarova S, Kefarov V, Experiment optimization in chemistry and chemical engineering, Moscow, Mir Publishers, 135 (1982)
Khuri AI, Cornell JA, Response surfaces: Design and analysis, New York, Marcel Dekker, 211 (1987)
Shinomiya K, Kabasawa Y, Toida T, Omaniari T, Ito Y, J. Chromatogr., 922, 365 (2001)
Pollock TJ, Thorne L, Armentrout RW, Appl. Environ. Microbiol., 58, 877 (1992)
Lazaridou A, Biliaderis CG, Roukas T, Izydorczyk M, Appl. Biochem. Biotechnol., 97(1), 1 (2002)
Singh PS, Saini GK, Kennedy JF, Carbohydr. Polym., 78, 89 (2008)
Hofmann R, Kappler T, Posten C, Sep. Purif. Technol., 51(3), 303 (2006)