Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 16, 2010
Accepted February 12, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of carbon source and metabolic engineering on butyrate production in Escherichia coli
Department of Chemical & Biological Engineering, Korea University, Seoul 136-713, Korea 1Clean Energy Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
mkoh@korea.ac.kr
Korean Journal of Chemical Engineering, July 2011, 28(7), 1587-1592(6), 10.1007/s11814-011-0032-6
Download PDF
Abstract
Butyrate was produced in recombinant Escherichia coli strains by applying metabolic engineering strategies. The genes for producing butyrate were cloned from Clostridium acetobutylicum and then expressed in E. coli. To study important factors for improving the productivity of butyrate, we deleted pta and ptsG genes in E. coli and compared the effects of these gene deletions in E. coli B and K strains. The effect of carbon sources, glucose and glycerol, was also compared. A significant improvement of butyrate production was made when glycerol was used as a carbon source, resulting in 0.56 g/l of butyrate in LB medium with 1% (v/v) glycerol.
References
Zhang CH, Yang H, Yang FX, Ma YJ, Curr. Microbiol., 59(6), 656 (2009)
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ, Aliment. Pharmacol. Ther., 27, 104 (2008)
Wang YF, Chen NS, Chung YP, Chang LH, Chiou YH, Chen CY, Mol. Cell. Biochem., 285, 51 (2006)
Zigova J, Sturdik E, J. Ind. Microbiol. Biotechnol., 24, 153 (2000)
Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y, Energy Fuels, 22(5), 3459 (2008)
Alam S, Stevens D, Bajpai R, J. Ind. Microbiol., 2, 359 (1988)
Evans PJ, Wang HY, Appl. Microbiol. Biotechnol., 32, 393 (1990)
Wu ZT, Yang ST, Biotechnol. Bioeng., 82(1), 93 (2003)
Zhu Y, Liu XG, Yang ST, Biotechnol. Bioeng., 90(2), 154 (2005)
Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H, Appl. Microbiol. Biotechnol., 77(6), 1305 (2008)
Clomburg JM, Gonzalez R, Appl. Microbiol. Biotechnol., 86(2), 419 (2010)
Shiloach J, Kaufman J, Guillard AS, Fass R, Biotechnol. Bioeng., 49(4), 421 (1996)
Zhou S, Iverson AG, Grayburn WS, Biotechnol. Lett., 30(2), 335 (2008)
Dittrich CR, Bennett GN, San KY, Biotechnol. Prog., 21(4), 1062 (2005)
Khankal R, Luziatelli F, Chin JW, Frei CS, Cirino PC, Biotechnol. Lett., 30(9), 1645 (2008)
Phue JN, Noronha SB, Bhattacharyya R, Wolfe AJ, Shiloach J, Biotechnol. Bioeng., 91(5), 649 (2005)
Phue JN, Shiloach J, J. Biotechnol., 109, 21 (2004)
Datsenko KA, Wanner BL, Proc. Natl. Acad. Sci. USA., 97, 6640 (2000)
Liu Q, Ouyang SP, Chung A, Wu Q, Chen GQ, Appl. Microbiol. Biotechnol., 76(4), 811 (2007)
Tseng HC, Martin CH, Nielsen DR, Prather KL, Appl. Environ. Microbiol., 75, 3137 (2009)
Dittrich CR, Vadali RV, Bennett GN, Sant KY, Biotechnol. Prog., 21(2), 627 (2005)
Meng FG, Park YD, Zhou HM, Int. J. Biochem. Cell. B., 33, 701 (2001)
Rariy RV, Klibanov AM, Proc. Natl. Acad. Sci. USA., 94, 13520 (1997)
Aboulwafa M, Chung YJ, Wai HH, Saier MH, Microbiol. Sgm., 149, 763 (2003)
Pennetier C, Oberto J, Plumbridge J, J. Mol. Microb. Biotechnol., 18, 230 (2010)
Jeong JY, Kim YJ, Cho NW, Shin DW, Nam TW, Ryu S, Seok YJ, J. Biol. Chem., 279, 38513 (2004)
Plumbridge J, Mol. Microbiol., 29, 1053 (1998)
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ, Aliment. Pharmacol. Ther., 27, 104 (2008)
Wang YF, Chen NS, Chung YP, Chang LH, Chiou YH, Chen CY, Mol. Cell. Biochem., 285, 51 (2006)
Zigova J, Sturdik E, J. Ind. Microbiol. Biotechnol., 24, 153 (2000)
Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y, Energy Fuels, 22(5), 3459 (2008)
Alam S, Stevens D, Bajpai R, J. Ind. Microbiol., 2, 359 (1988)
Evans PJ, Wang HY, Appl. Microbiol. Biotechnol., 32, 393 (1990)
Wu ZT, Yang ST, Biotechnol. Bioeng., 82(1), 93 (2003)
Zhu Y, Liu XG, Yang ST, Biotechnol. Bioeng., 90(2), 154 (2005)
Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H, Appl. Microbiol. Biotechnol., 77(6), 1305 (2008)
Clomburg JM, Gonzalez R, Appl. Microbiol. Biotechnol., 86(2), 419 (2010)
Shiloach J, Kaufman J, Guillard AS, Fass R, Biotechnol. Bioeng., 49(4), 421 (1996)
Zhou S, Iverson AG, Grayburn WS, Biotechnol. Lett., 30(2), 335 (2008)
Dittrich CR, Bennett GN, San KY, Biotechnol. Prog., 21(4), 1062 (2005)
Khankal R, Luziatelli F, Chin JW, Frei CS, Cirino PC, Biotechnol. Lett., 30(9), 1645 (2008)
Phue JN, Noronha SB, Bhattacharyya R, Wolfe AJ, Shiloach J, Biotechnol. Bioeng., 91(5), 649 (2005)
Phue JN, Shiloach J, J. Biotechnol., 109, 21 (2004)
Datsenko KA, Wanner BL, Proc. Natl. Acad. Sci. USA., 97, 6640 (2000)
Liu Q, Ouyang SP, Chung A, Wu Q, Chen GQ, Appl. Microbiol. Biotechnol., 76(4), 811 (2007)
Tseng HC, Martin CH, Nielsen DR, Prather KL, Appl. Environ. Microbiol., 75, 3137 (2009)
Dittrich CR, Vadali RV, Bennett GN, Sant KY, Biotechnol. Prog., 21(2), 627 (2005)
Meng FG, Park YD, Zhou HM, Int. J. Biochem. Cell. B., 33, 701 (2001)
Rariy RV, Klibanov AM, Proc. Natl. Acad. Sci. USA., 94, 13520 (1997)
Aboulwafa M, Chung YJ, Wai HH, Saier MH, Microbiol. Sgm., 149, 763 (2003)
Pennetier C, Oberto J, Plumbridge J, J. Mol. Microb. Biotechnol., 18, 230 (2010)
Jeong JY, Kim YJ, Cho NW, Shin DW, Nam TW, Ryu S, Seok YJ, J. Biol. Chem., 279, 38513 (2004)
Plumbridge J, Mol. Microbiol., 29, 1053 (1998)